跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲銘
研究生(外文):Che-Ming Chang
論文名稱:使用實數編碼之演化式計算應用於配電系統多時段饋線重構問題之研究
論文名稱(外文):Application of real-coding on evolutionary computation for distribution system feeder reconfiguration problems under load variations.
指導教授:蔡孟伸蔡孟伸引用關係
口試委員:廖炯州蕭瑛東
口試日期:2012-06-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:配電系統饋線重構基因演算法TOPSIS
外文關鍵詞:Distribution systemFeeder reconfigurationGenetic algorithmTOPSIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
由於環保意識的抬頭,節能減碳的理念逐漸受到重視,如何讓配電系統在正常運行的情況下,使其運轉處於最佳的狀態以降低能源的消耗是非常重要的課題,為達此一目的,饋線重構為相當重要的一項技術。饋線重構主要是在滿足輻射狀的情況之下,透過開關的切換以改變配電系統的架構。因此饋線重構可視為一種組合性最佳化的問題。由於配電系統上開關數量眾多,面對此一問題,可行解空間開關操作策略的數量龐大,有效找尋到最佳的開關操作策略來達成饋線重構的目的變成相當的重要。有鑒於實際配電系統之負載是隨著時間而有所變動,本論文之相關模擬分別考慮配電系統在單時段以及多時段的情況之下,進行單目標以及多目標之分析,探討基因演算法搭配實數編碼方式應用於饋線重構問題上之可行性,並且與其他編碼方式比較其效能,於多目標分析部分本論文改良了既有的TOPSIS多屬性決策法以計算演算法之適應值,期望能有效求解多目標饋線重構之問題。

As the concepts of environmental protection and energy saving bring more attention, how to reduce the energy loss during the normal operations of distribution system becomes an important issue. Feeder reconfiguration is a very important technique that can be used to deal with different types of distribution system problems. By changing the distribution system structure the distribution system can be operated in a more efficient way during normal and contingency operations. Feeder reconfiguration is a typical combinatorial optimization problem. Due to the large amount of switches on a distribution system, the possible solutions of the switching operation plans increase dramatically. Therefore, searching for the best switching operation plan to accomplish the feeder reconfiguration becomes an important issue. This paper applies real-coding of Genetic Algorithm for single- and multi-objectives feeder reconfiguration under fixed load and various load conditions. The searching efficiency and stability with other coding methods are compared. In the multi-objectives feeder reconfiguration problems, the improved TOPSIS is applied to calculate the fitness value of the Genetic Algorithm in order to effectively solve the feeder reconfiguration problems.

中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 3
1.3 論文架構 4
第二章 配電系統問題描述 5
2.1 配電系統 5
2.2 配電自動化 7
2.3 饋線重構 8
2.4 變動負載配電系統下之目標函數與限制條件 10
第三章 研究方法 17
3.1 基因演算法 17
3.2 改良式TOPSIS多屬性決策 19
3.2.1 傳統TOPSIS多屬性決策法 19
3.2.2 改良TOPSIS多屬性決策法 21
3.3 演化式計算之編碼方式概述 25
3.3.1 二進制編碼方式 25
3.3.2 整數編碼方式 28
3.4 實數編碼 31
3.5 多時段編碼方式應用於基因演算法 36
3.5.1 各種編碼方式之多時段編碼 36
3.5.2 開關狀態二進制編碼之基因操作 38
3.5.3 開關編號整數編碼之基因操作 39
3.5.4 區域供電源整數編碼之基因操作 40
3.5.5 字串編碼之基因操作 41
3.5.6 實數編碼之基因操作 42
3.5.7 各種編碼方式染色體合法性之分析 43
第四章 模擬結果與分析 46
4.1 配電系統建立與描述 46
4.2 33-Bus單時段配電系統 47
4.2.1 單目標分析 48
4.2.2 多目標分析 51
4.3 121-Bus多時段配電系統 55
4.3.1 單目標分析 57
4.3.2 多目標分析 62
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 71
參考文獻 73


[1]鄭明仁,應用蟻行演算法於配電系統最佳路徑規劃之研究,碩士論文,國立台灣科技大學,台北,2005。
[2]陳裕達,應用交談式基因演算法於配電系統多目標復電問題,碩士論文,國立台灣大學,台北,2000。
[3]柯裕隆,應用派翠網路於配電系統開關操作策略制定之研究,博士論文,國立中山大學,高雄,2001。
[4]簡靖陽,配電系統操作最佳化之研究,博士論文,淡江大學,台北,2001。
[5]吳武昌,以物件導向專家系統進行多時段負載轉供,碩士論文,中原大學,桃園,2002。
[6]吳武昌,應用粒子群集與柏拉圖最佳化於配電系統饋線重構問題之研究,博士論文,國立臺北科技大學,台北,2011。
[7]A. Morton and M. Y. Mareels, “An efficient brute-force solution to the network reconfiguration problem,” IEEE Trans. on Power Delivery, vol. 15, no.3, July 2000, pp. 996-1000.
[8]A. M. Stankovic and M. S. Calovic, “Graph oriented algorithm for the steady-state security enhancement in distribution networks,” IEEE Trans. on Power Delivery, vol. 4, no. 1, January 1989, pp. 539-544.
[9]H. J. Lee and Y. M. Park, “A restoration aid expert system for distribution substations,” IEEE Trans. on Power Delivery, vol. 11, no, 4, October 1996, pp. 1765-1769.
[10]K. Nara, A. Shiose, M. Kitagawa and T. Ishihara, “Implementation of genetic algorithm for distribution systems loss minimum re-configuration,” IEEE Trans. on Power System, vol. 7, no. 3, 1992, pp. 1044-1051.
[11]B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia and N. HadjSaid, “Radial network reconfiguration using genetic algorithm based on the matroid theory,” IEEE Trans. on Power Systems, vol. 23, no. 1, February 2008, pp.186-195.
[12]許富淵,改良式基因演算應用於配電系統重構問題之探討,碩士論文,中原大學,桃園,2004。
[13]Y. H. Song, G. S. Wang, A. T. Johns and P. Y. Wang, “Distribution network reconfiguration for loss reduction using fuzzy controlled evolutionary programming,” IEE Proceedings-, Generation Transmission and Distribution, vol. 144, no. 4, July 1997, pp.345-350.
[14]H. Kim., Y. Ko and K. H. Jung, “Artificial neural network based feeder reconfiguration for loss reduction in distribution systems,” IEEE Trans. on Power Delivery, vol. 8, no. 3, 1933, pp. 1356-1366.
[15]H. D. Chiang and R. Jean-Jumeau, “Optimal network reconfigurations in distribution systems. I. A new formulation and a solution methodology,” IEEE Trans. on Power Delivery, vol. 5, 1900, pp. 1902-1909.
[16]H. D. Chiang, J. C. Wang, O. Cockings and H. D. Shin, “Optimal network reconfigurations in distribution systems. II. Solution algorithm and numerical results,” IEEE Trans. on Power Delivery, vol. 5, 1990, pp. 1568-1574.
[17]J. S. Wu, “A petri-net algorithm for multiple contingencies of distribution system operation,” IEEE Trans. on Power Systems, vol. 13, no. 3, August 1998, pp. 1164-1171.
[18]J. Olamaei, A. Arefi, A. H. Mazinan and T. Niknam, “A hybrid evolutionary algorithm based on ACO and SA for distribution feeder reconfiguration,” International Conference on Computer and Automation Engineering, Singapore, 2011, pp. 265-269.
[19]W.C. Wu and M.S. Tsai, “Feeder reconfiguration using binary coding particle swarm optimization,” International Journal of Control, Automation, and Systems, vol. 6, no.4, Aug. 2008, pp. 488–494.
[20]W.C. Wu and M.S. Tsai, “Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration,” IEEE Trans. on Power Systems, August 2011, pp. 1591-1599.
[21]M. S Tsai and F. Y Hsu, “Application of grey correlation analysis in evolution programming for distribution system feeder configuration”, IEEE Trans. on Power Systems, Vol. 25, No. 2, May 2010, pp. 1126-1133.
[22]M. S. Tsai and C. C. Chu, “Application of hybrid EP-ACO for power distribution system loss minimization under load variations,” International Conference on Intelligent System Application to Power Systems, Greece, 2011, pp. 1-7.
[23]王志賢,以多代理人系統偵測含分散式電源之配電網路故障位置,碩士論文,國立中山大學,高雄,2009。
[24]劉清華,以JAVA為基礎的三相不平衡配電潮流,碩士論文,中原大學,桃園,2003。
[25]畢威寧,「結合AHP與TOPSIS法於供應商績效評估之研究」,科學與工程技術期刊,第一卷,第一期,2005,第75-83頁。
[26]吳漢雄、鄧聚龍、溫坤禮,灰色入門分析,台北市:高立圖書,1996,第130-134頁。
[27]D. Shin, J. Kim, T. Kim, J. Cho, and C. Singh, “Optimal service restoration and reconfiguration of network using Genetic-Tabu algorithm,” Electric Power Systems Research, vol. 71, no. 2, pp. 2004, 145–152.
[28]J. Z. Zhu, “Optimal reconfiguration of electrical distribution network using the refined genetic algorithm,” Electric Power Systems Research, vol. 62, no. 1, 2002, pp. 37–42.
[29]E. Romero, A. Gomez, J. Riquelme, and F. LLorens, “Path-based distribution network modeling: Application to reconfiguration for loss reduction,” IEEE Trans. on Power Systems, vol. 20, no. 2, May 2005, pp. 556–564.
[30]Y. Fukuyama, H. Endo and Y. Nakanishi, “A hybrid system for service restoration using expert system and genetic algorithm,” International Conference on Intelligent Systems Applications to Power Systems, 1996, pp. 394-398.
[31]J. Mendoza, R. Lopez, D. Morales, E. Lopez, P. Dessante, and R. Moraga, “Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: Real application,” IEEE Trans. on Power Systems, vol. 21, no. 2, May 2006, pp. 948–954.
[32]B. Radha, R. T. F. Ah King, and H. C. S. Rughooputh, “A real-parameter genetic algorithm for optimal network reconfiguration,” IEEE International Conference on Industrial Technology, 2003, pp. 54–59.
[33]謝宏明,使用基因演算法進行配電系統靜態轉供開關安裝位置之決定,碩士論文,中原大學,桃園,2004。
[34]M. R. Irving, W. P. Luan and J. S. Daniel, “Supply restoration in distribution networks using a genetic algorithm,” International Journal of Electrical Power & Energy Systems, vol. 24, no 6, August 2002, pp. 447-457.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top