跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田益在
研究生(外文):Yi-Tzai Tian
論文名稱:運用於傅立葉輪廓術最佳中通濾波器之研發
論文名稱(外文):Development of Optimal Band-pass Filters for Arbitrary Surface Reconstruction Using Fourier Transform Profilometry
指導教授:陳亮嘉
指導教授(外文):Liang-Chia Chen
口試委員:葉勝利林世聰
口試委員(外文):Sheng-Lih YehShyh-Tsong Lin
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:中通濾波器傅立葉頻譜傅立葉輪轉換廓術頻譜資訊
外文關鍵詞:Fourier Transform ProfilometryBand-pass filterOverlappingSpectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
本研究中提出了一種最佳中通濾波器設計,將傅立葉頻譜中有效頻譜資訊萃取的更完整,有助於提高三維表面重建精度。系統使用數位投影機產生正弦條紋結構光,將正弦條紋結構光投影至物體表面,由於物體的形貌變化造成變形的正弦條紋結構光,利用三通道彩色CCD擷取變形條紋之影像,並經由傅立葉轉換將影像從空間域轉換至頻率域,傅立葉頻譜中包含著背景資訊、正弦條紋結構光資訊及各種頻率之資訊,其中條紋資訊代表物體表面相位資訊,本研究中探討各種形狀的中通濾波器,並設計最佳中通濾波器萃取傅立葉頻譜中的條紋資訊。
研究中同時針對多彩物體表面做處理,當數位投影機產生正弦條紋結構光投影至多彩物體表面,正弦條紋除了會因物體形貌產生變形條紋外,也會因物體表面的色彩產生影響,使得正弦條紋明暗變化不一致,造成相位資訊錯誤。利用影像處理的方式處理物體表面色彩資訊,在影像擷取上,除了擷取一張變形條紋的影像外,另外擷取一張投影均勻背景光至物體表面之影像,兩張影像影像處理後,把物體表面色彩資訊去除,並增強正弦條紋資訊,再由傅立葉轉換得到影像處理後之傅立葉頻譜,由於背景資訊及物體色彩資訊去除,使得頻譜中背景頻譜資訊可有效降低,可有利於第一頻譜資訊的萃取。


This article presents a modified band-pass filter which is used to improve the accuracy of three-dimensional surface reconstruction. Fourier Transform Profilometry (FTP) uses an image to obtain the profile information of a 3D surface. The aim of this approach is to achieve high-speed measurement. However, When projection a structure light onto a complex shape object, the slope will over the measurement limit. There is a phenomenon for the fundamental frequency and first-order overlapping in the spectrum, lead to very difficult for extracting beneficial information. Therefore, the accuracy of measurement results is influenced by collecting the correct surface information in the frequency domain using band-pass filter.
So far, the ellipse filter results better than the circle filter. However, after extraction by using the ellipse band-pass filter, the reconstruction of three-dimensional shape error causes by much redundant information was extracted. Accordingly, we present the optimal band-pass filter for extracting useful information in the spectrum.


摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究之創新性 4
1.4 論文架構 5
第2章 文獻回顧 6
2.1 引言 6
2.2 編碼結構光 7
2.2.1 編碼結構光之原理 7
2.2.2 編碼結構光之文獻 8
2.3 相移法 11
2.3.1 相移法之原理 11
2.3.2 相移法之文獻 12
2.4 傅立葉轉換輪廓術 15
2.4.1 傅立葉轉換輪廓術之原理 15
2.4.2 傅立葉轉換輪廓術之文獻 16
第3章 三維形貌量測原理與技術 23
3.1 三維輪廓重建原理 23
3.2 傅立葉轉換三維形貌量測術之原理 24
3.2.1 單頻傅立葉轉換 24
3.3 頻譜分離技術 26
3.3.1 空間域與頻率域之關係 26
3.3.2 頻譜疊合 27
3.3.3 頻譜分離技術 29
3.4 中通濾波 30
3.5 相位擷取技術 31
3.6 相位重建技術 31
第4章 量測系統架構與量測之演算法 33
4.1 演算法之流程 33
4.2 量測系統架構 35
4.2.1 影像投影單元 36
4.2.2 影像擷取單元 38
4.3 消除物體色彩資訊及降低頻譜背景資訊 40
4.3.1 消除物體色彩資訊 40
4.3.2 降低頻譜背景資訊 42
4.4 量測系統之調制轉換函數探討 44
4.5 最佳中通濾波器設計 49
4.6 系統參數K值 52
第5章 系統量測實例結果分析與討論 54
5.1 系統重覆度量測及精度分析 54
5.1.1 ISO 5436-1:2000 54
5.1.2 三步相移法之重覆度量測 55
5.1.3 傳統傅立葉轉換輪廓術之重覆度量測 56
5.1.4 本研究之演算法之重覆度量測 59
5.2 各種中通濾波器形狀之分析 62
5.2.1 圓形中通濾波器 63
5.2.2 方形中通濾波器 64
5.2.3 橢圓形中通濾波器 66
5.2.4 本研究改良之中通濾波器 68
5.3 斜率量測極限驗證 70
5.4 最佳化中通濾波器之三維量測實例 78
5.4.1 彩色階高塊量測 78
5.4.2 乒乓球半球量測 81
5.4.3 手掌量測 84
5.4.4 模型面具量測 87
5.5 討論與分析 89
第6章 結論與未來展望 91
6.1 結論 91
6.2 未來展望 92
參考文獻 93


[1]W. Z. Liu, G. Mu and Z. Fang, "Color-coded projection grating method for shape measurement with a single exposure," Applied Optics, Vol. 39, No. 20, 2000, pp. 3504-3508.
[2] L. Zhang, B. Curless and M. Seitz, "Rapid shape acquisition using color structured light and multi-pass dynamic programming," International Symposium on 3D Data Processing Visualization and Transmission, 2002, pp. 24-36.
[3] H. J. Chen, J. Zheng and J. Fang, "Surface height retrieval based on fringe shifting of color-encoded structured light pattern," Optical Letters, vol. 33, no. 16, 2008, pp. 1801–1803.
[4]J. Salvi, S. Fernandez, T. Pribanic and X. Llado, "A state of the art in structured light patterns for surface profilometry," Pattern Recognition, vol. 43, 2010, pp. 2666-2680.
[5]S. Zhang and P. Huang, "High-Resolution, Real-time 3D Shape Acquisition," IEEE Computer Vision and Pattern Recognition Workshop on Realtime 3D Sensors and Their Uses, vol. 3, 2004, pp. 28-37.
[6]S. Zhang and S.-T. Yau, "High-resolution, Real-time 3D Absolute Coordinate Measurement Based on a Phaseshifting Method," Opt. Express 1414, 2006, pp. 2644-2649.
[7]P. Huang, C. Zhang and F. Chiang, "High-speed 3-D shape measurement based on digital fringe projection," Optical Engineering, vol. 42, no. 1, 2003, pp. 163–168.
[8]Peisen S. Huang, Qingyig Hu, Feng Jin, and Fu-Pen Chiang, "Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring," Optical Engineering, 1999, 1065-1071.
[9]J. Pan, P. S. Huang, F. P. Chiang, "Color phase-shifting technique for three dimensional shape measurement," Optical Engineering, 2006, vol. 45.
[10]X. Su, M. R. Sajan, A. Asundi, "Fourier transform profilometry for 360-deg shape using TDI camera," Proc. of SPIE, vol. 2921, 1997.
[11]M. Takeda, Quan Gu, M. Kinoshita, H. Takai, and Y. Takahashi, "Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities andyor surface isolations," Applied Optics, vol. 36, no. 22, 1997.
[12]Q. Zhang, X. Su, L. Xiang, Y. Cao and W. Chen , "Three-dimensional shape visualization of balloon hull in quick deflation," Proc. of SPIE, vol. 5852, 2005, pp.901-907.
[13]X. Sua1, Q. Zhanga, J. Lia and Z. Lib, "Optical 3D Shape Measurement for Vibrating Drumhead," Proc. of SPIE, vol. 6027, 2006, pp.60271P-1-60271P-7.
[14]Q. Zhang, X. Su and L. Xiang, "Whole-field Vibration Analysis of a Woofer’s Cone using a High-speed Camera," Proc. of SPIE, vol. 6279, 2007.
[15]Y. Fu* ,W. Zou ,H. Xiao ,and M. Chai , "3D profilometry reconstructs based on two-frequency projecting grating method," Proc. of SPIE, vol. 6788 , 2007, pp. 67880E-1-67880E-7.
[16]Q. Zhang,X. Su,Y. Cao, Y. Li, L. Xiang , and W. Chen, "Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination," Optical Engineering, 2005, pp. 113601-1-113601-7.
[17]H. Guo and P. Huang, "3-D shape measurement by use of a modified Fourier transform method," Proc. of SPIE , vol. 7066, 2008, pp.70660E-1-70660E-8.
[18]C. Breluzeau, A. Bosseboeuf, S. Petitgr and X. Leroux, "Automate fringe pattern extrapolation for patterned surface profiling by interference microscopy with Fourier transform analysis," Proc. of SPIE, vol 5858, 2005, pp. 58580B-1-58580B-12.
[19] J. Li, X. Su and L. Guo, "Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes," Optical Engineering, vol. 29, no. 29, 1990.
[20]S. Li, X. Su, W. Chen and L. Xiang, "Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition," Optical Society of America, vol. 26, no. 5, 2009.
[21]M. Takeda and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry," Optical Society of America, vol. 72, no. 1, 1981.
[22]張啟燦,基於傅立葉轉換輪廓術的動態物體三維面形測量的研究,碩士論文,四川大學電子信息學院光電系,四川,2001。
[23]D. C. Ghiglia and M. D. Pritt, "Two-dimensional phase unwrapping theory, algorithms, and software, " Wiley, 1998.
[24]http://www.ti.com.tw
[25]A. Asundi and W. Zhou, "Unified calibration technique and its applications in optical triangular profilometry," Applied Optics, vol. 38, 1999, pp. 3556-3561.
[26]ISO 5436-1 : 2000 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21978
[27]何宣緯,具高精度與段高量測範圍傅立葉轉換三維形貌量測系統之研發,碩士論文,國立臺北科技大學自動化科技研究所,臺北,2008。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top