跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭詠禎
研究生(外文):Yung-Jen Hsiao
論文名稱:冷軋純鋁之再結晶特性研究
論文名稱(外文):Recrystallization of Cold Rolled Pure Aluminum
指導教授:陳貞光
口試委員:陳志慶張世賢
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:冷軋退火動態回復再結晶織構
外文關鍵詞:Cold rolledAnnealingDinamic recoveryRecrystallizationTexture
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用高純度鋁(99.999%)經冷軋10%、30%、50%、70%、90%後,分別進行100°C、200°C、300°C與400°C的靜態再結晶熱處理。在未經熱處理、冷軋達50%以上的試片中,顯微組織開始有些許靜態再結晶的出現,熱處理一開始進行動態回復時,差排往晶界附近移動,形成許多低角度晶界,接著新的晶粒在晶界附近開始形成。隨著熱處理溫度上升,晶粒逐漸粗化,此時由背向散射繞射分析測得晶粒的集合組織,在退火初期由{001}<100>立方織構轉變為相對混亂的隨機集合組織,立方織構的比例由14.8%降為0%;當再結晶完成時,立方織構的集合組織再度增強。而晶粒開始粗化後,才又回到隨機的集合組織。但當冷軋量提高到70%以上時,晶粒粗化達到一臨界值時,晶粒仍會再度回到立方織構,顯示在立方織構中,晶粒間的晶界能相對較低,也代表以立方織構存在的晶界原子重合性較佳,因此大的晶粒傾向以立方織構方向吞食其他鄰近的晶粒所致,以保有更穩定的晶界。

In this study, 99.999% 5n high-purity aluminum is cold-rolled by 10%, 30%, 50%, 70%, and 90%. The materials are then annealed at 100 °C, 200 °C, 300 °C, and 400 °C. Without annealing, materials cold rolled by 50% or more demonstrate dynamic recrystallization. Dynamic recovery is observed by migration of mobile dislocations toward the grain boundaries. Such activities increase the amount of low-angle grain boundaries. Recrystallized grains are then observed to form primarily at the grain boundaries with increasing annealing temperature. EBSD observations find that the {001} <100> cube texture gradually rotates toward random texture at initial recrystallization stage. The cube texture decreases from 14.8 % to 0%. When recrystallization completes, the structures rotate back to the cube texture. In the coarsening stage, the grains grow with time and relatively random texture is again obtained. It is observed that, in the cold-rolled 70% aluminum, after grain coarsening reaches a critical value, the grains return to bear cube texture. The grain boundary energy apparently is lower for cube textured grains possibly due to the coherence among between the grains. It stabilizes the grain structures by lowering the boundary energies.

摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 塑性加工 2
2.1.1 輥軋概述 2
2.1.2 冷軋原理 3
2.1.3 冷軋微觀組織 4
2.2 退火機制 4
2.2.1 回復 6
2.2.2 再結晶 8
2.2.3 成核成長 11
2.3 晶粒旋轉機制 15
2.3.1 差排旋轉 15
2.3.2 晶體結構的旋轉 16
2.4 織構基本理論 18
2.4.1 米勒指數法 19
2.4.2 歐拉角法 19
2.4.3 晶體方向分佈函數法 23
2.4.4 極圖 25
2.4.5 反極圖 27
2.5 穿透式電子顯微鏡分析 27
第三章 研究方法 29
3.1 實驗材料 29
3.2 實驗流程 29
3.3 試片製備與金相試驗 30
3.3.1 光學顯微鏡試片製備 30
3.3.2 電子背向散射衍射試片製備 31
3.3.3 穿透式電子顯微鏡試片製備 32
第四章 結果與討論 34
4.1 加工量對純鋁之顯微組織分析 34
4.1.1 冷軋量對晶粒尺寸影響 34
4.1.2 加工量對織構之影響 39
4.2 熱處理對純鋁之顯微組織分析 44
4.2.1 退火溫度對晶粒尺寸影響 44
4.2.2 退火溫度對不同加工量之組織影響 47
4.2.2.1 退火溫度對冷軋10%之織構影響 47
4.2.2.2 退火溫度對冷軋30%之織構影響 51
4.2.2.3 退火溫度對冷軋50%之織構影響 55
4.2.2.4 退火溫度對冷軋70%之織構影響 59
4.2.2.5 退火溫度對冷軋90%之織構影響 63
4.2.3 退火溫度對冷軋之織構影響 67
4.3 穿透式電子顯微鏡觀察 68
第五章 結論 72
5.1 加工量對純鋁之顯微組織探討 72
5.2 退火溫度對純鋁之顯微組織探討 73
參考文獻 74


[1]陳貞光,曾天佑,謝榮淵,江連桂,「平面顯示器用高純度鋁濺鍍靶材開發」,礦冶, 2005,pp. 107-117。
[2]洪胤庭,邱軍浩,黃宏勝,曾天佑,「液晶顯示器用高純度鋁靶開發」,礦冶,2010,pp.50-55。
[3]賴耿陽,「最新冷軋成形全集」,台南:復漢出版社,1991,第1-5頁。
[4]M. J. Luton, C. M. Sellars, “Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation”, Acta Metal, 17, 1969, pp.1033-1043.
[5]楊慧德,「物理冶金」,台北:鼎茂圖書,1988,第6.1-6.11頁。
[6]L. M. Clarebrough, M. E. Hargreaves , and G. W. West, “The Release of Energy during Annealing of Deformed Metals”, Proc. R. Soc. Lond. A, 232, 1955, pp.252-270.
[7]彭建雄、許哲榮,「物理冶金原理」,台北:雲陽出版社,1984,第278-314頁。
[8]Reza Abbaschian and Robert E. Reed-Hill, “Physical Metallurgy Principles”, Baker and Taylor Books, 1991, pp.234-236.
[9]J. E. Bailey and P. B. Hirsch, “The Recrystallization Process in Some Polycrystalline Metals”, Proc. R. Soc. Lond. A, 267, 1962, pp.11-30.
[10]J. C. M. Li, “Possibility of subgrain rotation during recrystallization”, Appl. Phy., 33, 1962, pp.2958-2965.
[11]W. A. Anderson and R. F. Trans, “ Recrystallization of aluminum in terms of the rate of nucleation and the rate of growth”, AIME, 140, 1945, p.161-177.
[12]C. S. Smith, “Metal Interfaces”, ASM Seminar, 1962, pp.65-72.
[13]F. N. Rhines, “Quantitative Microscopy”, Metall. Trans., 1, 1970, pp.20-1105.
[14]R. T. DeHoff and F. N. Rhines, “Quantitative Microscopy”, McGraw-Hill. New York, 1970, pp.149-422.
[15]彭建雄、許哲榮,「物理冶金原理」,台北:雲陽出版社,1984。
[16]J. P. Nielsen, “Recrystallization Grain Growth and Texture”, ASM Seminar, 1966, pp.64-141.
[17]陳志慶,奈米鋁材料塑性行為之探討,碩士論文,國立成功大學材料科學及工程學研究所,台南,2006。
[18]薛至廷,摩擦力對純鋁雙晶受平面壓縮應變的影響區之探討,碩士論文,國立成功大學材料科學及工程學研究所,台南,2006。
[19]V. Randle and O. Engler, “Introduction to texture analysis”, Z. Metallk, 56, 1965, pp.872-873.
[20]D. Peirce, R. J. Asaro, A. Needleman, “An analysis of nonuniformand localized deformation in ductile single crystals”, Acta metall., 30, 1982, pp.1087-1119.
[21]H. J. Bunge, “In preferred oeirntation in deformed metals and rocks, an introduction to modern texture analysis”, Ed. H.R. Wenk Academic Press, 1985, pp.73-74.
[22]V. Randle and O. Engler, “Introduction to texture analysis-macrotexture, microtexture and orientation mapping”, CRC Press, 1999.
[23]D. B. Williams and C. B. Carter, “Transmission electron microscopy”, New York and London, Plenum Press, 1996, pp.11-15.
[24]M. H. Loretto and R. E. Smallman, “Defect analysis in electron microscopy”, London, John Wiley and Sons, 1975, pp.121-122.
[25]陳力俊,「材料電子顯微鏡學修訂版」,國科會精密儀器發展中心出版,1994。
[26]鮑忠興、劉思謙,「近代穿透式電子顯微鏡實務」,台中:滄海書局,1998,第297-304頁。
[27]洪胤庭,邱軍浩,黃宏勝,「熱軋及熱處理對高純鋁靶顯微組織及濺鍍特性之影響」,金屬熱處理,2010,第38-54頁。
[28]T. Baudin, F. Julliard, P. Paillard, R. Penelle, “Simulation of primary recrystallization from TEM orientation data”, Scr. Mater. , 43, 2000, pp.8-63.
[29]R. Penelle , “Nucleation and growth during primaryrecrystallization of certain metals and alloys with a face-centered cubic structure: Formation of the cube texture”, Int J Mater Res , 100, 2009, pp.32-1420.
[30]B. Radhakrishnan and G. B. Sarma, “Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals”, Mater. Sci. Eng., 494, 2008, pp.9-73.
[31]A. K. Ghosh and W. Huang, “Investigations and applications of severe plastic deformation”, Kluwer Dordrecht, 80, 2000, pp. 29-36.
[32]H. E. Vatne, T. Furu, E. Nes, “Nucleation of recrystallised grains from cube bands in hot deformed commercial purity aluminium”, Mater. Sci. Tech., 12, 1996, pp.201-210.
[33]J. Zhang, F. Pan, R. Zuo, C. Bai, “The low temperature precipitation in commercial-purity aluminum sheets for foils”, J. Mat. Proc. Tech., 206, 2008, pp.7-382.
[34]F. Julliard, “Study of recrystallization mechanisms in the Invar, Fe-36% Ni alloy”, PhD thesis, University of Paris Sud, France, 11, 2001, pp.211-309.
[35]A. L. Etter, M. H. Mathon, T. Baudin, V. Branger, “Penelle Influence of the cold rolled reduction on the stored energy and the recrystallization texture in a Fe–53%Ni alloy”, Scr. Mater, 46, 2002, pp.7-311.
[36]M. C. Theyssier and J. H. Driver, “Recrystallization nucleation mechanism along boundaries in hot deformed Al bicrystals”, Mater. Sci. Eng, 272, 1999, pp.73-82.
[37]H. Yamagata and Y. Ohuchida, N. Saito, and M. Otsuka, “ Nucleation of new grain during discontinuous dynamic recrystallization of 99.998 mass% Aluminum at 453K”, Scr. Mater., 45, 2001, pp.1055-1061.
[38]S. Ferrasse, K. T. Hartwig, R. E. Goforth, V. M. Segal, “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion”, Metall. Mater. Trans., 28, 1997, pp.1047-1057.
[39]J.Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe, “A new route to bulk nanostructured in processing and manufacturing of sheet metals”, Acta Mater., 49, 2001, pp.1497-1505.
[40]W. C. Liu and J. G. Morris, “Texture evolution of polycrystalline AA 5182 aluminum alloy with an initial {001}<110>texture during rolling”, Scr. Mater., 47, 2002, pp.487-492.
[41]O. Engler and M. Y. Huh, “Evolution of the cube texture in high purity alumnum capacitor foils by continuous recrystallization and subsequent grain groeth”, Mate. Sci. Eng., 271, 1999, pp.371-381.
[42]A. L. Helbert, W. Wang, T. Baudin, F. Brisset, R. Penelle, “Reinforcement of the Cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled”, Mater. Char., 64, 2012, pp.1-7.
[43]F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena”, Elsevier Amsterdam, 7, 2004, p.497-502.
[44]O. Engler, “On the origin of the R orientation in the recrystallization textures of aluminum alloys”, Metall. Mater. Trans., 30, 1999, pp.1517-1527.
[45]J. H. Ryu and D. N. Lee, “The effect of precipitation on the evolution of recrystallization texture in AA8011 aluminum alloy sheet”, Mater. Sci. Eng., 336, 2002, pp.225-232.
[46]W. C. Liu, C. S. Man, J. G. Morris, “Lattice rotation of the cube orientation to the β fiber during cold of AA5052 aluminum alloy”, Scr. Mater., 45, 2001, pp.807-814.
[47]A. Azushima, R. Kopp, A. Korhonen, “Severe plastic deformation(SPD) processes for metals”, CIPP Annals Manufacturing Tech., 57, 2008, pp.716-735.
[48]A. K. Ghosh, W. Huang, “Investigations and Applications of Severe Plastic Deformation”, NATO Sci. Ser., 80, 2000, pp.29-36.
[49]M. J. Zehetbauer, R. Z. Valiev, “Nanomaterials by Severe Plastic Deformation”, Wiley-VCH Weinheim, 3, 2004, pp.426-432.
[50]K. Fujita, T. Fujita, K. Oh-ishi, K. Kaneko, Z. Horita, T.G. Langdon, “Microstructures after Processing by Aging and ECAP for Al-Mg2Si Alloys Containing Excess Si or Mg” Mater. Sci., 475, 2005, pp. 4047-4050.
[51]H. Gleiter, “Nanostructured materials: basic concepts and microstructure”, Acta Mater., 48, 2000, pp.1-29.
[52]F. Q. Zuo, J. H. Jiang, A. D. Shan, J. M. Fang, X. Y. Zhang, “Shear deformation and grain refinement in pure Al by asymmetric rolling”, Trans. Nonferrous Trans. Nonferrous Met. Soc. China, 18, 2008, pp.774-777.
[53]N. S. Lee, J. H. Chen, P. W. Kao, L. W. Chang “Anisotropic tensile ductility of cold-rolled and annealed aluminumalloy sheet and the beneficial effect of post-anneal rolling”, Scr. Mater., 60, 2009, pp.340-343.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top