跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡易霖
研究生(外文):Yi-Lin Tsai
論文名稱:利用鐵鎳銅錳合金製備大面積石墨烯之研究
論文名稱(外文):Synthesis of Large-Area Graphene Layer from Fe-Ni-Cu-Mn Alloy
指導教授:徐開鴻
指導教授(外文):Kai-Hung Hsu
口試委員:陳克紹陳適範唐自標
口試委員(外文):Ko-Shao ChenShih-Fan ChenTzu-Piao Tang
口試日期:2012-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:石墨層疊加石墨烯石墨層成長機制
外文關鍵詞:graphite layerfolded graphenethe mechanism of graphite layer growth
相關次數:
  • 被引用被引用:3
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以液相之鐵鎳銅錳合金溶解石墨粉後再析出大面積石墨層。以真空熔煉爐最高限制溫度1350 ℃加熱並持溫5小時,透過鐵鎳銅錳合金本身的配比變化獲得具多樣形貌的樣品,並由其中發現幾個可產生大面積石墨烯訊號之合金配比。根據觀察,合金表面適度生長的樹狀晶結構搭配適度的石墨皺摺有助於石墨層產生分層,即層與層之間失去凡德瓦爾鍵結,令厚層石墨層分開而成為疊加的石墨烯。
根據研究結果,銅元素扮演著控制碳原子析出的角色,而錳元素則令銅元素的排碳機制異質提升,令分層現象在某些特定配比下劇烈的產生。再經由酸蝕刻分離取下具疊加石墨烯訊號之石墨層,石墨烯最大面積可達大約2500μm2。
本研究並透過簡易之樣品定位分析技術,來確認疊加石墨烯表面形貌與實際面積。藉由此樣品定位分析記錄綜合先前之研究所得結果,將可實際理解液相金屬法合成大面積多層石墨烯層之準則,做為進行高品質石墨烯層應用研究的依據。


This research used the liquid phase of Fe-Ni-Cu-Mn alloy to dissolve graphite powder; precipitate then synthesis to a large-area graphite layer on the surface of the alloy. We made use of a smelting vacuum furnace at 1350 ℃ for up to 5 hours to obtain the various samples in different alloy power ratios. And, we found some formulas which can produce a large-area graphene. According to our observation, A proper dendrite structure collocate a fine graphite wrinkle which will help the forming of partition phenomenon between graphite layers. In other words, the van der Waals bond might be vanished between graphite layers, so the graphite disassemble into the folded graphenes.
According to this research, copper plays an important role of controlling the segregation of carbon, and manganese enhances its ability. The partition phenomenon then take place dramatically in some alloy formulas. Finally, we separate its folded graphene film from the alloy surface by means of etching. The maximal area of graphene is about 2500μm2
We also observed the surface of the graphene to check the relation of appearance and graphene area by a simple location skill. Therefore, we can understand the principle to form the large area graphene layer by liquid phase metals, so as to be the foundation of application of high quality graphene layers.


目錄

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
第二章 文獻回顧 4
2.1碳材料介紹 4
2.1.1 石墨 4
2.1.2 石墨烯 6
2.2 石墨烯製備方式 9
2.2.1 機械剝離法 9
2.2.2 氧化還原法 11
2.2.3 碳化矽磊晶法 12
2.2.4 化學氣相沉積法 14
2.2.5 固態碳源合成法 16
2.3 拉曼光譜 17
2.3.1 拉曼光譜基本原理 17
2.3.2 拉曼光譜判定石墨烯 18
2.4 研究目的及動機 22
第三章 實驗方法與設備 24
3.1 實驗方法 24
3.1.1 實驗流程 24
3.1.2 製程參數設計 24
3.1.3 試片之拉曼定位分析 31
3.1.4 酸蝕刻分離 33
3.2 實驗設備 34
3.2.1 三軸向搖震式混合機 34
3.2.2 真空熔煉爐 35
3.2.3 光學顯微鏡 36
3.2.4 掃描式電子顯微鏡 37
3.2.5 拉曼光譜儀 38
第四章 結果與討論 39
4.1 試片配比之設定 39
4.1.1 試片外觀 39
4.1.2 試片表面之OM影像觀察 43
4.2 不同銅與錳添加量對合成石墨層之影響 46
4.2.1 固定含銅量不同錳變化之拉曼分析 46
4.2.2 SEM觀察 52
4.2.3 定位記錄 60
4.3 增加碳添加量對合成石墨層之影響 74
4.3.1 固定含銅量不同錳變化之拉曼分析 74
4.3.2 定位記錄 77
4.4 酸蝕刻分離及特性量測 80
4.4.1 拉曼分析 80
4.4.2 酸蝕刻分離OM及SEM觀察 82
第五章 結論 85
參考文獻 86
附錄 定位記錄之拉曼訊號 92
5Cu-1Mn定位記錄之拉曼訊號 93
5Cu-3Mn定位記錄之拉曼訊號 98
6Cu-1Mn定位記錄之拉曼訊號 103
10Cu-1Mn定位記錄之拉曼訊號 108
3C-6Cu-3Mn定位記錄之拉曼訊號 111


表目錄

Table 4.1 The composition ratio of specimen in C=1.5wt% system 41
Table 4.2 The composition ratio of specimen in C=3wt% system 42
Table 4.3 The numerical values of every specimen by G and 2D peak 48
Table 4.4 The numerical values of every specimen by G and 2D peak 49
Table 4.5 The numerical values of every specimen by G and 2D peak 50
Table 4.6 The numerical values of every specimen by G and 2D peak 51
Table 4.7 Raman spectra of 1.5C- Fe65.8Ni28.2Cu5Mn1 at fixed position in Fig. 4.21 63
Table 4.8 Raman spectra of 1.5C- Fe64.4Ni27.6Cu5Mn3 at fixed position in Fig. 4.24 66
Table 4.9 Raman spectra of 1.5C- Fe65.1Ni27.9Cu6Mn1 at fixed position in Fig. 4.27 69
Table 4.10 Raman spectra of 1.5C- Fe62.3Ni26.7Cu10Mn1 at fixed position in Fig. 4.30
73
Table 4.11 The numerical values of every specimen by G and 2D peak 76
Table 4.12 Raman spectra of 3C- Fe63.7Ni27.3Cu6Mn3 at fixed position in Fig. 4.35 79
Table 4.13 The numerical values of every specimen by G and 2D peak 81


圖目錄

Fig. 1.1 The expects of global market for graphene-based products between 2009
and 2020 3
Fig. 1.2 The expects of global market for supercapacitors between 2008 and 2015 3
Fig. 2.1 Crystal structure of 2H-type graphite 5
Fig. 2.2 Three common graphite structures with different graphene stacking
Arrangements 5
Fig. 2.3 Fullerene molecules, carbon nanotubes, and graphite can all be thought of as being formed from graphene sheets 7
Fig. 2.4 Schematic diagrams of wrinkle formation: (A) generation of wrinkles from nucleation of defect lines on step edges between Ni terraces and (B) thermal stress induced formation of wrinkles around step edges and defect lines 8
Fig. 2.5 Graphene prepared by mechanical exfoliation. (A) Natural graphite (B) Scotch tape (C) Repeated peeling the graphite by Scotch tape and (D) printed on SiO2 substrate. (E) Optical microscope image 10
Fig. 2.6 Optical microscope image of graphene transferred on SiO2/Si. (A) Graphene crystallites on 300 nm SiO2 imaged with white light, (C) another graphene sample on 200 nm SiO2 imaged with white light. (B) Shows step-like changes in the contrast for 1, 2, and 3 layers. Single-layer graphene is clearly visible on the left image (A), but even three layers are indiscernible on the right (C)
10
Fig. 2.7 Molecular models show the conversion process from graphite to chemically derived graphene 12

Fig. 2.8 A non-contact mode AFM image of exfoliated GO sheets with three height profiles acquired in different locations 12
Fig. 2.9 The STM images of UHV grown Si-face graphene. (A) STM image of a single graphene layer showing the hexagonal structure. (B) STM image taken with a bias voltage of −2 V. Terraces are due to the roughness of the SiC substrate. (C) A schematic model of the graphene/SiC interface 13
Fig. 2.10 (A)(B)(C) AFM images of representative graphene flakes transferred from SiC onto SiO2. (All scale bars are 500 nm.) This suggests that, the graphene flake synthesized by epitaxial growth can not get large area 14
Fig. 2.11 Schematic diagram of chemical vapor deposition device 15
Fig. 2.12 (A) The typical AFM image of the CVD film obtained on nickel substrate with deposition time of 5 min.(B) The typical SEM image of the CVD nano-graphite film(C) The Raman spectra of the HOPG sample (a), the CVD films grown on Ni substrate during 5 min (b) and 60 min (c) 15
Fig. 2.13 (A) Appearance of the bulk specimen by Fe-Ni alloy system. (B) Optical microscope image of large area graphite film formed on Fe-Ni alloy system. (C)SEM image of large area graphite film formed on Ni-Cu alloy system
16
Fig.2.14 Schematic diagram of light scattering for Rayleigh scattering, Stokes scattering and anti-Stokes scatting , respectively 17
Fig 2.15 Raman spectra of single layer graphene and graphite 19




Fig 2.16 (A) The G band Raman intensity of graphene sheets as a function of the number of layers. The red dashed curve is a guide to the eye. (B) (a) Schematic laser refl ection and transmission at a certain depth y in graphene sheets deposited on a SiO2/Si substrate. (b)Multi-reflection of the scattering Raman light (from depth y) at the interfaces graphene/air and graphene/SiO2. (c). Calculated results of Raman G band intensity as a function of the number of layers with (red) and without (black) consideration of the multi-reflection of Raman scattering light in graphene 20
Fig 2.17 Optical images of SLG (A) before and (B) after folding. Schematic images of SLG (C) before and (D) after folding. Raman image obtaining from the (E) 2D and (F) G band positions. Raman images obtained by extracting the area of the (G) 2D and (H) G band 21
Fig 2.18 Raman spectra of BLG, SLG and 1+1 layer folded graphene. The spectra are normalized to have similar G band intensity 21
Fig 2.19 Raman spectra of graphene and graphite in different alloy system 23
Fig 3.1 Experimental flow chart 24
Fig. 3.2 Fe-Ni phase diagram 26
Fig. 3.3 Fe-Cu phase diagram 26
Fig. 3.4 Fe-C phase diagram 27
Fig. 3.5 Cu-Ni phase diagram 27
Fig. 3.6 Cu-C phase diagram 28
Fig. 3.7 Ni-C phase diagram 28
Fig. 3.8 Mn-C phase diagram 29
Fig. 3.9 Cu-Mn phase diagram 29
Fig. 3.10 Fe-Mn phase diagram 30
Fig. 3.11 Mn-Ni phase diagram 30
Fig. 3.12 Optical microscope stack image of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at
1350℃ for 5 hrs (no scale bar) 31
Fig. 3.13 Optical microscope image of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at
1350℃ for 5 hrs (200X) 32
Fig. 3.14 SEM image at fixed position of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at
1350℃ for 5 hrs (1500X) 32
Fig. 3.15 Photograph of heavy-duty shaker-mixer 34
Fig. 3.16 Photograph of vacuum smelting furnace 35
Fig. 3.17 Photograph of optical microscope 36
Fig. 3.18 Photograph of thermionic scanning electron microscope 37
Fig. 3.19 Photograph of Raman spectroscopy 38
Fig. 4.1 Appearance of the bulk surface by various content of copper and manganese in Fe:Ni=7:3(wt%) and C=1.5wt% system heated at 1350 ℃ for 5 hrs (unit:wt%)
41
Fig. 4.2 Appearance of the bulk surface by various content of copper and manganese in Fe:Ni=7:3 (wt%) and C=3wt% system heated at 1350 ℃ for 5 hrs (unit:wt%)
42
Fig. 4.3 SEM micrographs of 1.5C-Fe64.4Ni27.6Cu5Mn3 (wt%) on the edge of dendrite structure (150X) 42
Fig. 4.4 Optical microscope images of the bulk surface by various content of copper and manganese in Fe:Ni=7:3(wt%) and C=1.5wt% system heated at 1350 ℃ for 5 hrs (100X) 45
Fig. 4.5 Raman spectra of 1wt% content of copper for various content of manganese
48
Fig. 4.6 Raman spectra of 5wt% content of copper for various content of manganese
49
Fig. 4.7 Raman spectra of 6wt% content of copper for various content of manganese
50
Fig. 4.8 Raman spectra of 10wt% content of copper for various content of manganese
51
Fig. 4.9 SEM images of 1.5C- Fe68.6Ni29.4Cu1Mn1 (wt%) heated at 1350℃ for 5 hrs. (A)50X (B)250X 53
Fig. 4.10 SEM images of 1.5C- Fe65.8Ni28.2Cu5Mn1 (wt%) heated at 1350℃ for 5 hrs. (A)50X (B)250X 53
Fig. 4.11 SEM images of 1.5C- Fe65.1Ni27.9Cu6Mn1 (wt%) heated at 1350℃ for 5 hrs. (A)50X (B)250X 54
Fig. 4.12 SEM images of 1.5C- Fe62.3Ni26.7Cu10Mn1 (wt%) heated at 1350℃ for 5 hrs. (A)50X (B)250X 54
Fig. 4.13 SEM images of 1.5C- Fe65.8Ni28.2Cu5Mn1 (wt%) heated at 1350℃ for 5 hrs. (A)500X (B)800X 57
Fig. 4.14 SEM images of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at 1350℃ for 5 hrs. (A)500X (B)800X 57
Fig. 4.15 SEM images of 1.5C- Fe63.0Ni27.0Cu5Mn5 (wt%) heated at 1350℃ for 5 hrs. (A)500X (B)800X 58
Fig. 4.16 SEM images of 1.5C- Fe61.6Ni26.4Cu5Mn7 (wt%) heated at 1350℃ for 5 hrs. (A)500X (B)800X 58
Fig. 4.17 SEM images of 1.5C- Fe60.2Ni25.8Cu5Mn9 (wt%) heated at 1350℃ for 5 hrs. (A)500X (B)800X 59

Fig. 4.18 SEM images of 1.5C- Fe60.2Ni25.8Cu5Mn9 (wt%) heated at 1350℃ for 5 hrs(100X) 59
Fig. 4.19 Optical microscope stack image of 1.5C- Fe65.8Ni28.2Cu5Mn1 (wt%) heated at 1350℃ for 5 hrs (no scale bar) 61
Fig. 4.20 Optical microscope image of 1.5C- Fe65.8Ni28.2Cu5Mn1 (wt%) heated at 1350℃ for 5 hrs (200X) 62
Fig. 4.21 SEM image at fixed position of 1.5C- Fe65.8Ni28.2Cu5Mn1 (wt%) heated at 1350℃ for 5 hrs (700X) 62
Fig. 4.22 Optical microscope stack image of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at 1350℃ for 5 hrs (no scale bar) 64
Fig. 4.23 Optical microscope image of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at 1350℃ for 5 hrs (200X) 65
Fig. 4.24 SEM image at fixed position of 1.5C- Fe64.4Ni27.6Cu5Mn3 (wt%) heated at 1350℃ for 5 hrs (500X) 65
Fig. 4.25 Optical microscope stack image of 1.5C- Fe65.1Ni27.9Cu6Mn1 (wt%) heated at 1350℃ for 5 hrs (no scale bar) 67
Fig. 4.26 Optical microscope image of 1.5C- Fe65.1Ni27.9Cu6Mn1 (wt%) heated at 1350℃ for 5 hrs (200X) 68
Fig. 4.27 SEM image at fixed position of 1.5C- Fe65.1Ni27.9Cu6Mn1 (wt%) heated at 1350℃ for 5 hrs (750X) 68
Fig. 4.28 Optical microscope stack image of 1.5C- Fe62.3Ni26.7Cu10Mn1 (wt%) heated at 1350℃ for 5 hrs (no scale bar) 71
Fig. 4.29 Optical microscope image of 1.5C- Fe62.3Ni26.7Cu10Mn1 (wt%) heated at 1350℃ for 5 hrs (200X) 72

Fig. 4.30 SEM image at fixed position of 1.5C- Fe62.3Ni26.7Cu10Mn1 (wt%) heated at 1350℃ for 5 hrs (750X) 72
Fig. 4.31 Optical microscope images of the bulk surface by the same content of copper and manganese in Fe:Ni=7:3(wt%) but different content of carbon system heated at 1350 ℃ for 5 hrs (200X) 75
Fig. 4.32 Raman spectra of 6wt% content of copper for various content of manganese
76
Fig. 4.33 Optical microscope stack image of 3C- Fe63.7Ni27.3Cu6Mn3 (wt%) heated at 1350℃ for 5 hrs (no scale bar) 77
Fig. 4.34 Optical microscope image of 3C- Fe63.7Ni27.3Cu6Mn3 (wt%) heated at 1350℃ for 5 hrs (200X) 78
Fig. 4.35 SEM image at fixed position of 3C- Fe63.7Ni27.3Cu6Mn3 (wt%) heated at 1350℃ for 5 hrs (500X) 78
Fig. 4.36 Raman spectra of two different etching graphite layers 81
Fig. 4.37 Appearance of graphite layer formed by 1.5C-Fe64.4Ni27.6Cu5Mn3 alloy 82
Fig. 4.38 Optical microscope images of graphite layers formed on top of 1.5C- Fe64.4Ni27.6Cu5Mn3 alloy 83
Fig. 4.39 SEM images of graphite layer formed on top of 1.5C- Fe64.4Ni27.6Cu5Mn3 alloy 84


參考文獻

[1] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene” Nat. Phys., vol.2, 2006, pp.177-180.
[2] Z. Jiang, Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim,“Quantum Hall effect in graphene”, Solid State Commun., vol. 143, 2007, pp.14-19 .
[3] Q. F. Sun and X. C. Xie, “Quantum transport through a grapheme nanoribbon–superconductor junction” J. Phys.:Condens. Matter, vol.21, 2009. pp.344204-1-9.
[4] J. H. Chen, C. Jang, S. Xiao, M. I shigami, M. S. Fuhrer, “ Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2”, Nature Nanotechnology, vol.3, 2008, pp.206-209.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firso, “Electric Field Effect in Atomically Thin Carbon Films”, Science., vol.306, 2004, pp.666-669.
[6] http://www.bccresearch.com/report/graphene-applications-markets-avm075a.html
[7] http://www.bccresearch.com/report/supercapacitors-tech-markets-egy068a.html
[8] 長江證券,“材料行業 — 行業深度(研究報告)”,2011。
[9] 天相投資顧問有限公司,“低碳經濟主題 — 超級電容器: 戰略價值遠超鋰電池的標準低碳經濟核心產品”, 2010。
[10] http://www.cscf.cn/xinxi.asp
[11] 許倍誌,鐵鎳合金系統製備大面積石墨膜之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2010。
[12] 吳亭瑩,銅鎳合金系統製備大面積石墨膜之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2010。
[13] 谷紹民,利用鐵鎳銅合金製備大面積石墨層之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2011。
[14] 沈曾民,新型碳材料,北京:化學工業出版社,2003,第23-24頁。
[15] 宋健民,鑽石合成,台北:全華出版社,2000,第2.6-2.8頁。
[16] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, vol. 320, 2008, pp.1308.
[17] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett., vol. 8, 2008, pp. 902-907.
[18] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika,A. A. Balandin,W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits”, Appl. Phys. Lett., vol. 92, 2008, pp. 151911-1-3.
[19] A. K. Geim and K. S. Novoselov, “The rise of graphene” Nature Materials, vol. 6, 2007, pp.183-191.
[20] 沈曾民,新型碳材料,北京:化學工業出版社,2003,第225-229頁
[21] S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, 1991, p.56-58.
[22] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A.Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces“, Nano Res., vol. 2, 2009, pp.509-516.
[23] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son,V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 9, 2009, pp.30-35.


[24] S. J. Chae, F. Gu‥nes﹐, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee, “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition:Wrinkle Formation”, Adv. Mater., vol. 21, 2009, pp. 2328–2333.
[25] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett., vol. 93, 2008, pp. 113103-1-3.
[26] http://phys570x.wikispaces.com/file/view/570X_lec9_growthstruc.pdf
[27] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., vol. 91, 2007, pp. 063124-1-3.
[28] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour,“Improved Synthesis of Graphene Oxide”, ACSNANO, vol.4, 2010, pp.4806-4814.
[29] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney,E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-based composite materials”, Nature, vol.442, 2006, pp.282-286.
[30] S. Stankovich , D. A. Dikin , R. D. Piner , K. A. Kohlhaas, A. Kleinhammes, Y. Jia , Y. Wu , S. T. Nguyen , R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, vol.45, 2007, pp.1558–1565.
[31] M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene”, Chem. Rev., vol.110, 2009, pp.132-145.
[32] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science., vol. 312, 2006, pp.1191-1196.

[33] W. A. de Heer, C. Berger, X. Wu , P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and Gerard Martinez, “Epitaxial graphene”, Solid State Commun., vol. 143, 2007, pp. 92-100.
[34] C. Berger, Z. Song, X. Li, X. Wu, N. Brown,D. Maud, C. Naud and W. A. de Heer, “Magnetotransport in high mobility epitaxial graphene”, phys. stat. sol., vol. 204, 2007, pp. 1746–1750.
[35] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, vol. 20, 2008, pp. 1-28.
[36] J. Vaari, J. Lahtinen and P. Hautoja‥rvi, “The adsorption and decomposition of acetylene on clean and K-covered Co (0001)”, Catal. Lett., vol. 44, 1997, pp.43-49.
[37] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki and S. Yamamoto, “Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam”, Sci., vol. 560, 2004, pp.183-190.
[38] N. Gall′, E. Rut’kov and A. Tontegode, “Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution”, Phys. Solid State, vol. 46, 2004, pp.371-377.
[39] A. L. V. de Parga, F. Calleja, B. Borca, J. Passeggi, M. C. G, J. J. Hinarejos, F. Guinea and R. Miranda, “Periodically Rippled Graphene: Growth and Spatially Resolved Electronic Structure”, Phys.ReV. Lett., vol. 100, 2008, pp.056807-4.
[40] D. W. Goodman and J. T. Yates, “CO isotopic mixing measurements on nickel: Evidence for irreversibility of CO dissociation”, Catal., vol. 82, 1983, pp.255-260.
[41] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science., vol. 324, 2009, pp.1312-1314.

[42] A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova, A. A. Zolotukhin, B.Liu, K. C. Chin, A. T. S. Wee, “Raman scattering characterization of CVD graphite films”, Carbon, vol. 46, 2008, pp.963–968.
[43] S. Amini, J. Garay, G. Liu, A. A. Balandin and R. Abbaschian, “Growth of large-area graphene films from metal-carbon melts”, J. Appl. Phys., vol. 108, 2010, pp.094321-1-7.
[44] S. Amini, H, Kalaantari, J. Garay, A. A. Balandin and R. Abbaschian, “Growth of graphene and graphite nanocrystals from a molten phase”, J Mater Sci., 2011, pp. 1-9, DOI 10.1007/s10853-011-5432-9.
[45] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy”, Phys. Chem. Chem. Phys., vol. 9, 2007, pp.1276–1291.
[46] Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 2008, 92, 043121.
[47] Jens Hofrichter, Bartholoma‥us N. Szafranek, Martin Otto, Tim J. Echtermeyer,Matthias Baus, Anne Majerus, Viktor Geringer, Manfred Ramsteiner, and Heinrich Kurz, “Synthesis of Graphene on Silicon Dioxide by a Solid Carbon Source”, Nano Lett. 2010, 10, 36-42.
[48] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu,Y. P. Feng and Z. X. Shen, “Graphene Thickness DeterminationUsing Reflection and Contrast Spectroscopy”, Nano Lett., vol. 7, 2007, pp.2758-2763.
[49] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, vol. 143, 2007, pp.47-57.
[50] Ni, Z. H.; Wang, Y. Y.; Yu, T.; You, Y. M.; Shen, Z. X.Reduction of Fermi velocity in folded graphene observedby resonance Raman spectroscopy. Phys. Rev. B 2008,77, 235403.
[51] 宋健民、胡紹中、林逸樵、甘明吉、徐開鴻、張坤諒、吳亭瑩,“液相催化生長大面積的石墨層(上)”,工業材料雜誌,第273期,2009,第 167-170頁。
[52] 宋健民,胡紹中,林逸樵,甘明吉,徐開鴻,張坤諒,吳亭瑩,「液相催化生長大面積的石墨層 (下)」,工業材料,第274期,2009,第175頁。
[53] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H, Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature., vol. 457, 2009, pp.706-710.
[54] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett., vol. 93, 2008, pp. 113103-1-3.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top