跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳松嶺
研究生(外文):Song-Ling Chen
論文名稱:以真空燒結和熱均壓製程改善15 wt%鎳鐵基及15 wt%鈷基碳化鎢合金之腐蝕行為與機械性質
論文名稱(外文):Improvement of the Corrosion Behavior and Mechanical Properties of the WC-15 wt% (Ni, Fe) and WC-15 wt% Co alloys via Vacuum Sintering and HIP Processes
指導教授:張世賢張世賢引用關係
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:鎳鐵基碳化鎢熱均壓真空燒結腐蝕電位破裂韌性
外文關鍵詞:Ni-Fe based WCHIPVacuum SinteringCorrosion PotentialK1C
相關次數:
  • 被引用被引用:3
  • 點閱點閱:645
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:1
碳化鎢複合材料因具優越的機械性質、切削性能及耐磨耗能力,在工業界上常被應用於需要在嚴苛條件下操作的機械工具、鑽鑿工具和耐磨耗零件上。但作為傳統硬質合金的主要黏結劑Co,因其資源短缺且價格昂貴,故尋找Co的替代用品具有重要意義。鈷是現已發現中多數碳化鎢應用的最佳黏結劑金屬,而其他的鐵系金屬(鎳鐵基碳化鎢,鎳和鐵),則在需要熱硬度、抗熱龜裂或抗腐蝕/抗氧化的特殊場合使用。這類超硬合金因熔點高,大多採用粉末冶金製造,此外;熱均壓技術為一種同時結合了高溫與高壓的熱處理方式,並已被廣泛應用於粉末冶金工業上,以去除工件內部的封閉孔隙與缺陷,來改善材料的機械及物理性質。
本研究主要運用不同的燒結溫度(1250°C, 1300°C, 1350°C及1400°C),以尋求鈷基(WC-Co)和鎳鐵基碳化鎢合金(WC-Ni, Fe)最佳的燒結溫度。此外,將更進一步比較兩種不同黏結劑(WC-Ni, Fe與WC-Co)對碳化鎢硬質合金性質的差異;試片的製作是利用粉末冶金真空燒結方式,結合熱均壓(1250°C, 100 min, 175 and 120 MPa)製程,析出相的顯微結構微分析是利用SEM、XRD與EDS等技術。另一方面,並以硬度測試和抗彎強度(TRS)量測機械性質,腐蝕電位分析作為耐腐蝕性測試,以及材料破裂韌性(K1C)等,來評估真空燒結及熱均壓製程對於商用製造WC-Ni, Fe硬質合金之可行性。
實驗結果顯示,Ni, Fe基及Co基碳化鎢展現良好之液相燒結,試片幾乎不具孔隙,並表現出優良之機械性質。Ni, Fe基碳化鎢經燒結溫度1400°C,與Co基碳化鎢經燒結溫度1350°C與1400°C燒結1小時之後,其相對密度可達98%,硬度分別達到HRA 84與85以上,而抗折強度分別為2524 MPa與2471 MPa。此外,在抗腐蝕試驗方面,WC-Ni, Fe合金經1400°C燒結後,具有最低之腐蝕電流為1.1111 × 10-5 A,與最高之極化電阻2464.6 Ω•cm2;同時在K1C方面,可以提高至15.1 MPam1/2,此結果顯示WC-Ni, Fe合金具有較佳之耐腐蝕性及電性。


Tungsten carbide composites are widely are used in industry for machining tools, mining tools and wear-resistant parts requiring superior mechanical properties, cutting performance and wear-resistant abilities. As the main binder of conventional cemented carbides, Co is rare in storage and expensive; thus, it has made sense to look for a substitute. While cobalt has been found to be the optimal binder metal for most applications, other iron group metals (Ni-Fe based WC, nickel and iron) are employed to a limited extent for specialized applications, e.g., where hot hardness and resistance against thermal cracking or corrosion/oxidation resistance are required. Due to their high melting point, these hard metals are mostly manufactured by the power metallurgy method. In addition, the hot isostatic pressing (HIP) technique is a heat treatment method which combines high temperature and high pressure. Recently, the HIP technique has been widely used in the power metallurgy industry to eliminate the isolated pores and defects on the inside of work-pieces, thus improving the mechanical and physical properties of materials.
In the present research, different sintering temperatures (1250°C, 1300°C, 1350°C and 1400°C) were explored in order to find the optimal parameters of WC-Co and WC-Ni, Fe sintered materials, as well as to compare the different properties of two binders (WC-Ni, Fe and WC-Co) for WC materials. The specimens were fabricated using the vacuum sintering of the powder metallurgy technique combined with the HIP process (1250°C, 100 min, 175 and 120 MPa). The precipitate phases presented in the microstructures were analyzed using SEM, XRD and EDS techniques. In addition, the hardness test and transverse rupture strength (TRS) were used for the mechanical property test, the corrosion potential analysis for the corrosion test and the K1C test for the fracture toughness. Finally, the feasibility of commercial manufacturing WC-Ni, Fe cement carbides via the vacuum sintering and HIP processes was evaluated.
The experimental results showed the WC-Ni, Fe and WC-Co specimens to have good liquid-phase sintering and lower properties, and thus exhibit excellent mechanical properties. The optimal vacuum sintering temperatures of WC-Ni, Fe and WC-Co alloys were 1400°C and 1350°C for 1 h, respectively. The relative density reached 98% and 98.28%, the hardness was over HRA 84 and 85, and the TRS increased to 2524 and 2471 MPa. In addition, the corrosion resistance test results also showed that the 1400°C sintered WC-Ni, Fe alloy had the lowest corrosion current of 1.1111 × 10-5 A and the highest polarization resistance of 2464.6 Ω•cm2 in the 0.15 M HCl solution. Meanwhile, the value of K1C increased to 15.1 MPam1/2. These results showed that the WC-Ni, Fe alloy had the optimal corrosion resistance and electrical properties.


摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 1
第二章 文獻回顧 2
2.1 碳化鎢硬質合金(Tungsten Carbide) 2
2.1.1 潤濕性質(Wet ability)與接觸角 7
2.1.2 影響WC機械性質之因素 8
2.2 燒結理論 10
2.2.1 燒結驅動力 10
2.2.2 燒結機構 10
2.2.3 液相燒結 17
2.3 影響燒結的因子 21
2.4 真空燒結法 22
2.5 熱均壓處理 24
2.5.1 熱均壓設備 24
2.5.2 熱均壓加壓燒結 25
2.5.3 熱均壓的應用 26
2.5.4 熱均壓的空孔消失機構 28
第三章 實驗設備與研究方法 29
3.1 實驗儀器 29
3.2 實驗流程 30
3.2.1 原始粉末 31
3.2.2 加壓成形 31
3.2.3 真空燒結 32
3.2.4 熱均壓處理 34
3.3 性質分析 35
3.3.1 金相觀察 35
3.3.2 掃描式電子顯微鏡分析 36
3.3.3 X-ray繞射分析 36
3.3.4孔隙率與相對密度量測 37
3.3.5 硬度試驗 38
3.3.6三點抗折試驗 39
3.3.7 破裂韌性(Fracture toughness)K1C之量測 41
3.3.8動態電位腐蝕 42
第四章 結果與討論 43
4.1 粉末分析 43
4.2 燒結溫度對於材料性質影響 45
4.2.1 X-ray繞射分析(燒結試片) 45
4.2.2 燒結前後體積收縮率(燒結試片) 47
4.2.3相對密度量測(燒結試片) 48
4.2.4視孔隙率量測(燒結試片) 49
4.2.5 金相觀察(燒結試片) 50
4.2.6掃描式電子顯微鏡分析(燒結試片) 52
4.2.7 硬度試驗(燒結試片) 55
4.2.8 三點抗折試驗(燒結試片) 56
4.2.9 抗折破斷面觀察(燒結試片) 58
4.2.10 動態電位極化腐蝕試驗(燒結試片)60
4.2.11破裂韌性試驗(燒結試片) 62
4.3 熱均壓處理對WC超硬合金性質之影響 64
4.3.1 X-ray繞射分析(熱均壓試片) 64
4.3.2 相對密度量測(熱均壓試片) 66
4.3.3 視孔隙率量測(熱均壓試片) 67
4.3.4 硬度試驗(熱均壓試片) 69
4.3.5 三點抗折試驗(熱均壓試片) 70
4.3.6 掃描式電子顯微鏡分析(熱均壓試片) 72
第五章 結論 74
參考文獻 76


[1]Chongbin Wei, Xiaoyan Song, Shixian Zhao, Li Zhang and Wenbin Liu, "In-situ synthesis of WC–Co composite powder and densification by sinter-HIP," Int. Journal of Refractory Metals and Hard Materials, vol. 28, 2010, pp. 567-571.
[2]黃慎模,「碳化鎢植焊被覆延長刀具、工具、模具及零件之壽命至1000%」,機械材料,第192期,2001,第132-140頁。
[3]桂業煒、胡國平,「碳化鎢硬面材料」, 粉末冶金會刊,第24卷,1999,第257-262頁。
[4]A.A. Ogwu and T. J. Davis, "Proposed selection rules for suitable binders in cemented hard metals with possible applications for improving ductility in intermetallics," Journal of Material Science, vol. 27, 1992, pp. 5382-5388.
[5]American Society for Metals, ASM Meters Reference Book, ASM Int., 1983, pp. 84-87.
[6]ASM Metals Reference Book, Second Edition, ASM, Ohio, 1983, pp. 84-87.
[7]Metal Powder Report, May, 1994, pp.13.
[8]陳宗明,製程參數及結合劑對燒結碳化物之耐磨耗性能與機械性質影響評估,碩士論文,國立台灣科技大學機械工程研究所,台北,2000。
[9]P. Rautala and T. Norton, "Tungsten-Cobalt-Carbon System," Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), vol. 194, no. 4, 1954, pp. 1045-1050.
[10]P. Rautala and T. Norton, 1st Plansee Seminar, Rautte, 1952, pp. 303.
[11]T.P Tang and S.H. Chang, "Microstructure and Mechanical Properties of 440C-TiC Composite Steels Produced through Powder Metallurgy Processing," ISIJ International, vol. 48, no. 10, 2008, pp. 1473-1477.
[12]A.F. Guillermet, "Thermodynamic Properties of the Co-W-C System," Metallurgical and Materials Transactions A, vol. 20, no. 5, 1989, pp. 935-956.
[13]C. Colin, V. Guipont and F. Delannay, "Equilibrium Distribution of Liquid during Sintering of Assemblies of WC/Co Cermets," Metallurgical and Materials Transactions A, vol. 38A, 2007, pp. 150-158.
[14]G. Humpston and D. M. Jacobson, "Principles of Soldering and Brazing," ASM International, 1993, pp. 13-18.
[15]M. Humenik and W.D. Kingery, "Surface Tension and Wettability of Metal-Ceramic Systems," J. Amer. Ceram. Soc, vol. 37, 1954, pp. 18.
[16]D. Mari and D.R. Gonseth, "A New Look at Carbide Tool Life," Wear, vol. 105, 1993, pp. 9-17.
[17]黃錦鐘譯,「超硬合金知多少」,模具工業,第41 期,1992,第1-38 頁。
[18]Michael Bauccio, ASM Engineered Materials Reference Book, ASM Int., 1994, pp. 182.
[19]蘇金源、郭金國,粉末冶金學,台北市:全華科技圖書股份有限公司,2001,第1-43頁。
[20]G.C. Kuczynski, "Self-Diffusion in Sintering of Metallic Particles," Metallurgical and Materials Transactions C, vol. 185, 1949, pp. 169-178.
[21]黃坤祥,粉末冶金學,新竹縣竹東鎮:中華民國粉末冶金協會,2003,第167-199、234-238、355-374 頁。
[22]F. Parhami, R.M. McMeeking, A.C.F. Cocks and Z. Suo, "A model for the Sintering and coarsening of rows of spherical particles", Mechanics of Materials, vol. 31, 1999, pp. 43-61.
[23]李文福譯,工程材料的本質與性質,台北市:國立編譯館,1992,第119-372頁。
[24]G. C. Kczynski, "The Mechanism of Densification During Sintering of Metallic Particles," Acta Metallurgica, vol. 4, 1956, pp. 58-61.
[25]L. Ratke and P. W. Voorhees, Growth and Coarsening: Oswald Ripening in Material processing, New York: Springer, 2002, pp. 117-118.
[26]R. L. Cobel, "Sintering Alumina: Effect of Atmospheres," Journal of the American Ceramic Society, vol. 45, 1962, pp. 123-127.
[27]D.A. DeAntonio, D. Duhl, T. Howson and M.F. Rothman, Heat Treating of Superalloys, in ASM Handbook Vol. 4: Heat Treating, New York: ASM International, 1990, pp. 793-814.
[28]S-J L. Kang, W. A. Kaysser, G. Petzow, and D. N. Yoon, "Liquid Phase Sintering of Mo-Ni Alloys for Elimination of Isolated Pores," Modern Developments in Powder Metall., E. N. Aqua and C. I. Whitman, eds., MPIF, Princeton, N.J., vol. 15, 1985, pp. 477-488.
[29]J. W. Nowok, S. A. Benson, M. L. Jones, and D. P. Kalmanovitch, "Sintering Behaviour and Strength Development in Various Coal128Ashes, "Fuel, vol. 69, 1990, pp. 1020-1028.
[30]H.A. Saller, S.J. Paprocki, R.W. Dayton and E.S. Hodge, U.S. Patent 687 842, 1964.
[31]G.K. Jia, T.E. Fischer and B. Gallois, "Microstructure, Hardness, and Toughness of Nanostructured and Conventional WC–Co Composites," Nanostructured Materials, vol. 10, 1998, pp. 875-891.
[32]汪建民,粉末冶金技術手冊,新竹縣:中華民國粉末冶金協會,1999,第377-409頁。
[33]S.H. Chang, C. H. Tam, S.C. Lee, H.E. Huang, H.H. Ho and H.Y. Bor, "Properties and Microstructure of Cr-Si Target Material Manufactured by Hot Isostatic Press," Materials Science and Engineering of Powder Metallurgy, vol. 12, no. 5, 2007, pp. 277-283.
[34]S.C. Lee, S.H. Chang, T.P. Tang, H.H. Ho and J.K. Chen, "Improvement the Microstructure and Tensile Properties of Inconel 718 Superalloy by HIP Treatment," Materials Transactions, vol. 47, no. 11, 2006, pp. 2877-2881.
[35]R.L. Coble, "Hot Consolidation of Rapidly Solidified Powders: Sintering, Hot Pressing (HP) and Hot Isostatic Pressing (HIP) in Relation to the Superalloys," Powder Metallurgy International, vol. 10, no. 3, 1978, pp. 128-130.
[36]S. Amberg, E.A. Nylander and B. Uhrenius, "The Influence of Hot Isostatic Pressing on the Porosity of Cemented Carbide," Powder Metal International, vol. 6, no. 4, 1974, pp. 178-180.
[37]汪建民,粉末冶金技術手冊,新竹縣:中華民國粉末冶金協會,1999,第377-409頁。
[38]張世賢,Inconel 718與713LC 超合金熱均壓製程參數及特性研究,博士論文,國立成功大學材料科學及工程研究所,台南,2006。
[39]ASTM, "Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure", Designation: C830-00.
[40]W. D. Schubert, H. Neumeister, G. Kinger and B. Lux, "Hardness to toughness relationship of fine-grained WC-Co hardmetals," Int. Journal of Refractory Metals and Hard Materials, vol. 16, 1998, pp. 133-142.
[41]林郁凱,AISI H13工具鋼氮氧化/TiAlN多重表面處理後熱熔損、腐蝕及磨耗性質之研究,碩士論文,國立臺北科技大學材料科學及工程研究所,台北,2011。
[42]Xuanhui Qu, Jianxiang Gao, Mingli Qin and Changming Lei, "Application of a wax-based binder in PIM of WC–TiC–Cocemented carbides," International Journal of Refractory Metals & Hard Materials, vol. 23, 2005, pp. 273-277.
[43]H.C. Kim, D.Y. Oh and I.J Shon, "Sintering of Nanophase WC–15vol.%Co Hard Metals by Rapid Sintering Process," International Journal of Refractory Metals &Hard Materials, vol. 22, 2004, pp.197-203.
[44]Chongbin Wei , Xiaoyan Song , Shixian Zhao, Li Zhang and Wenbin Liu, "In-situ synthesis of WC–Co composite powder and densification by sinter-HIP," Int. Journal of Refractory Metals and Hard Materials, vol. 28, 2010, pp.567-571.
[45]S. Zhang, C. D. Qin and L. C. Lim, "Solid Solution Extent of WC and TaC in Ti(C,N) as Revealed by Lattice Parameter Increase," International Journal of Refractory Metals &Hard Materials, vol. 12. 1994, pp.329-333.
[46]Akshay Kumar, K. Singh and O.P. Pandey, "Sintering behavior of nanostructured WC–Co composite," Ceramics International, vol. 37, 2011, pp.1415–1422.
[47]C.M. Fernandes, A.M.R. Senos, M.T. Vieira and J.V. Fernandes, "Composites from WC powders sputter-deposited with iron rich binders," Ceramics International, vol. 35, 2009, pp.1617–1623.
[48]D. Broek, Elementary Engineering Fracture Mechanics, Nijhoff Int. Pub., 1994,
pp. 332.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top