跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王雅慧
研究生(外文):Ya-Hui Wang
論文名稱:組成及分散均勻性對LiCoO2正電極性能的影響之研究
論文名稱(外文):Effects of compositional homogeneity on the cell performance of LiCoO2 cathodes
指導教授:李嘉甄
指導教授(外文):Chia-Chen Li
口試委員:李志聰吳茂松陳金銘
口試委員(外文):Jyh-Tsung Lee
口試日期:2012-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:鋰離子二次電池正極羧甲基纖維素鈉苯乙烯丁二烯橡膠均勻性
外文關鍵詞:Li-ion batteryCathodeSodium carboxymethyl celluloseStyrene-butadiene rubberUniformity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
對於鋰離子電池正極,電極漿料的分散性以及乾燥程序後的生胚均勻性,皆是影響電極最終電化學及物理性質的重要因素。漿料系統中所添加的黏結劑種類、添加量將會左右漿料的分散性及電極內的組成均勻性。本實驗研究添加不同黏結劑對LiCoO2電極性質之比較,水系系統漿料以增稠劑羧甲基纖維素鈉(SCMC)及黏結劑苯乙烯丁二烯橡膠(SBR)做為複合式黏結劑;有機系統方面則採用聚二氟乙烯(PVDF)做為黏結劑,針對黏結劑對漿料的分散穩定性、乾燥後的黏結劑均勻性、孔隙率、電化學性質等進行比較。
高分子黏結劑與正極漿料的分散穩定性間具有極高的相關性,當黏結劑吸附於粉體表面時,粉體間具有立體障礙而可避免漿料內團聚情形產生,使漿料得到較高的分散穩定性。高分散穩定性的漿料經塗佈後可得到較緻密的電極生胚,有助於降低電極阻抗及提高電化學性質,因此添加的高分子對於漿料粉體的分散性亦為混漿時考量的因素之一。並且電極漿料經過乾燥程序時,未吸附於粉體上的黏結劑將隨著蒸發的溶劑遷移到生胚的表面,此一結果致使生胚內產生黏結劑的濃度差。另一方面,當黏結劑的遷移率較大,將會降低電極粉體彼此間的黏附及電極對於鋁箔的黏附力,使得電極的電化學表現較差。因此漿料乾燥時,在乾燥速率曲線中固定速率區間的長短與吸附於粉體表面的黏結劑多寡會是影響生胚內組成均勻性的關鍵因素。
本實驗藉由比較水系電極中添加不同SBR和SCMC相對比例,進行電極物理及電化學性質的比較,以研究和拮取最佳的水系黏結劑配比。並利用最佳的水系黏結劑比例和有機系統間的黏結劑進行比較,探討不同系統間的黏結劑對電極之物理及電化學性質上的差異。實驗利用表面電位儀及流變儀,探討電極粉體與黏結劑混合後的表面電位以及混漿後之流變曲線,以進行漿料分散性的分析。並藉由熱重分析儀及掃描式電子顯微鏡得到電極生胚內的組成分佈情形,最後進行電極板加壓前後之黏附強度、電極阻抗、充放電性質等進行分析。從漿料之分散性質及乾燥時所造成的遷移情形與正電極物理、電化學性質間的關聯性,以了解生胚組成均勻性及漿料分散性,對於電極物理及電化學表現的影響。


The fabrication of Li-ion battery has been discussed by wet mixing process is this investigation. Dispersion property and drying conditions will change the homogeneity of the resulted cathode sheets to affect the physical and electrochemical properties. This investigation studied effects of binder compositions on the homogeneity and electrochemical performances, in which the binder used including the aqueous-based composited of SBR & SCMC and the organic-based PVDF.
It has been known that binder plays an important role in the powder dispersion system. When binder can be to adsorbed on the surface of particles, steric hindrance will be generated between particles, and the slurry will reveals a very stable condition. Cathode sheets manufactured by the well dispersed slurries can exhibit better electrochemical performances. The electrochemical properties of cathode sheets with containing composite different ratios of SBR and SCMC were discussed in this investigation. Where cathode particles are adsorbed by the binder molecules, the steric hindrance in cathode slurries due to the adsorptions may have them being cell stabilized.
It was fond that the binder that is free and not adsorbed on powder could migrate with solvent up to evaporation the surface of the cathode tape during drying, resulting in an inhomogeneous distribution of binder content in the dried electrode sheet. When binder shows larger migration, the adhesion force between particles will decrease, and so does the adhesions between the cathode sheet and the aluminum foil could become poorer, and so does the electrochemical performance.
Based on the theoretical calculations, it can be understand that the non-uniform distribution of binder in the cathode sheet are dominated by the migration control theory mechanism.
The dispersion homogeneity of cathode slurries were practical examined in the measurements of zeta potential and rheology. The physical & electrochemical properties of the dried cathode sheets were assessed on the measurements of adhesion force, electrical resistance, AC-Impedance and rate capabilities.


誌 謝 II
摘 要 III
ABSTRACT V
目 錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 鋰離子二次電池概述 3
2.1.1 鋰離子二次電池的發展 3
2.1.2 鋰離子電池工作原理與組成 4
2.1.3 鋰離子電池正極材料 7
2.1.3.1 LiMn2O4 8
2.1.3.2 LiNiO2 9
2.1.3.3 LiCoO2 10
2.1.4 黏結劑 13
2.1.4.1 聚二氟乙烯(PVDF) 13
2.1.4.2 羧甲基纖維素鈉(SCMC) 14
2.1.4.3 苯乙烯-丁二烯橡膠(SBR) 15
2.2 膠體理論 16
2.2.1 膠體動力學性質 17
2.2.2 電雙層理論 18
2.2.2.1 膠體的帶電行為 19
2.3 DLVO理論 20
2.2. 1 膠體的穩定機制 21
2.4 流變學 22
2.4.1 牛頓流體(Newtonian Flow) 24
2.4.2 擬塑性流體(Pseudoplastic Flow) 25
2.4.3 膨脹性流體(Dilatant Flow) 25
2.4.4 觸變性流體(Thixotropic Flow) 26
2.4.5 動態黏彈性 26
2.5 電化學交流阻抗光譜法(EIS) 28
第三章 實驗方法與步驟 30
3.1 實驗原料 30
3.1.1 粉末與溶劑 30
3.1.2 黏結劑 30
3.1.3 電池組成及藥品 31
3.2 實驗設備與流程 32
3.2.1 粉體吸附曲線 32
3.2.2 電極均勻性量測 32
3.2.3 表面電位量測 34
3.2.4 漿料流變性質 35
3.2.5 極板之顯微結構觀察 36
3.2.6 極板機械性質分析 36
3.2.6 電性及電化學性質量測 37
第四章 結果與討論 38
4.1 黏結劑恆溫吸附曲線 38
4.2 Zeta表面電位 40
4.2.1 LiCoO2表面電位量測 40
4.2.2 KS6表面電位量測 41
4.3 漿料流變行為 42
4.3.1 穩態流變檢測 42
4.3.2 動態流變檢測 47
4.4 黏結劑遷移率分析 48
4.5 生胚表面顯微結構 52
4.6 助導劑遷移量分析 54
4.7 電極黏附強度測量 55
4.8 表面阻抗 56
4.9 孔隙率 57
4.9 交流阻抗頻譜 58
4.10 放電曲線 60
4.11 水系LiCoO2電極綜合比較 61
第五章 結論 62
第六章 參考文獻 63


[1] M. Armand, eds. D. W. Murphy, J. Broadhead and B. C. H. Steele, “Materials for Advanced Batteries”. (Plenum Press, New York, 1980).
[2] R. J. Brodd, “Synopsis of the Lithium-Ion Battery Markets”.
[3] W. Tang, L.L. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu, S.Y. Guan and K. Zhu, Electrochemistry Communications, 12(2010), 1524.
[4] A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori and K. Zaghib, Journal of Power Sources, 163(2007), 1047.
[5]K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger and C.M. Julien, Journal of Power Sources, 196(2011), 3949.
[6] B. L. Ellis, K. T. Lee, and L. F. Nazar, Chemistry of Materials, 22(2010), 691.
[7] 林柏勳,射頻磁控濺鍍法製備磷酸鋰鐵(LiFePO4/C)薄膜之研究,逢甲大學材料科學與工程研究所,台中,2004。
[8] M. Gao, X. Chen, H. Pan, L. Xiang, F. Wu and Y. Liu, Electrochimica Acta, 55(2010), 9067.
[9] D. Munao, J.W.M. van Erven, M. Valvo, E. Garcia-Tamayo, E.M. Kelder, Journal of Power Sources, 196(2011), 6695.
[10] F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh and I.J. Davidson, Journal of Power Sources, 196(2011), 2128.
[11]J.H. Lee, U. Paik, V.A. Hackley and Y.M. Choi, Journal of The Electrochemical Society, 152(2005), 1763.
[12]林元凱,探討有機添加劑對磷酸鋰鐵陰極材料之性能研究,碩士論文,國立中山大學化學研究所,高雄,2006。
[13]M. Minakshi, Electrochimica Acta, 55(2010), 9174.
[14]Y.M. Choi, S.I. Pyun and S.I. Moon, Solid State Ionics, 89(1996), 43.
[15]A.K. Kercher, J.O. Kiggans and N.J. Dudney, Journal of The Electrochemical Society, 157(2010), 1323.
[16]C.T. Hsieh, C.Y. Lin and J.Y. Lin, Electrochimica Acta, 56(2011), 8861.
[17]J. Guo, A. Sun, X. Chena, C. Wang, and A. Manivannan, Electrochimica Acta, 56(2011), 3981.
[18]A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon and A.K. Shukla, Chemistry of Materials, 22(2010), 2857.
[19]E. Kang, Y.S. Jung, G.H. Kim, J. Chun, U. Wiesner, A.C. Dillon, J.K. Kim and J. Lee, Advanced Functional Materials, 21(2011), 4349.
[20]A. Xiao, L. Yang, B.L. Lucht, S.H. Kang and D.P. Abraham, Journal of The Electrochemical Society, 156(2009), 318.
[21]D. Arumugama, G.P, Kalaignan, K. Vediappan and C.W. Lee, Electrochimica Acta, 55 (2010), 8439.
[22]D. Arumugam and G.P. Kalaignan, Electrochimica Acta, 55 (2010) 8709.
[23]Z. Chen, H. Zou, X. Zhu, J. Zou and J. Cao, Journal of Solid State Chemistry, 184 (2011), 1784.
[24]W. Tang, L.L. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu, S.Y. Guan and K. Zhu, Electrochemistry Communications, 12(2010), 1524.
[25]F. Nobili, S. Dsoke, M. Minicucci, F. Croce and R. Marassi, Journal of Physics and Chemical B, 110(2006), 11310.
[26]Z.Q. Chao, X.J. Mei, F.X. Yong, D.Q. Feng, J.Y. Xia, H. Ling1 and S.S. Gang, Chinese Science Bulletin, 52(2007), 1187.
[27]S. Valanarasu and R. Chandramohan, Journal of Alloys and Compounds, 494 (2010) 434.
[28]D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.-J. Kim and M. Schmidt, Electrochimica Acta, 47(2002), 4291.
[29]J.H. Lee, U. Paik, V.A. Hackley and Y.M. Choi, Journal of Power Sources, 161(2006), 612.
[30]S. Babinec, H. Tang, A. Talik, S. Hughes and G. Meyers, Journal of Power Sources, 174(2007), 508.
[31]E. Markevich, G. Salitra and D. Aurbach, Electrochemistry Communications, 7(2005), 1298.
[32]J.H. Lee, S. Lee, U. Paik and Y.-M. Choi, Journal of Power Sources, 147(2005),249.
[33]H. Buqa, M. Holzapfel, F. Krumeich, C. Veit and P. Nov´ak, Journal of Power Sources, 161(2006), 617.
[34]J. H. Lee, U. Paik, V. A. Hackley and Y.-M. Choi, Journal of The Electrochemical Society, 152(2005), 1763.
[35]J.H. Lee, J.S. Kim, Y.C. Kim, D.S. Zang, Y.M. Choi, W.Il. Park and U. Paik,Electrochemical and Solid-State Letters, 11(2008), 175.
[36]A. Kristoffersson, E. Roncari and C. Galassi, Journal of the European Ceramic Society, 18(1998), 2123.
[37]A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori and K. Zaghib, Journal of Power Sources, 163(2007), 1047.
[38]D.J. Shaw, “Introduction to Colloid and Surface Chemistry”,4th ed., Butterworth Heinemann, (1992).
[39]E. Kissa, “Dispersions”, Marcel dekker, (1998).
[40]高濂,孫靜,劉陽橋,徐開鴻,奈米粉體的分散及表面改性,台北:五南出版社,2005。
[41]U. Paik, V.A. Hackley, S.C. Choi and Y.G. Jung, Colloids and Surfaces, 135(1998), 77.
[42]R. Moreno, American Ceramic Society Bulletin, 71(1992), 1521.
[43]D.H. Napper, Journal of Colloid Interface Science, 58(1977), 390.
[44] P.F. Luckhum and S. Rossi, Advanced Colloid Interface Science, 82(1999), 43.
[45]H. Van Olphen, Interscience, USA, 1963.
[46]G.W. Lee, J.H. Ryu, W. Han, K.H. Ahn and S.M. Oh, Journal of Power Sources, 195 (2010), 6049.
[47]Q. Yang, T.S. Chung, M. Weber and K. Wollny, Polymer, 50(2009), 524.
[48]S. Shippy and M.J Lu, Cyclic Voltammetry-An Example of Voltaic Methods, March 2007.
[49]X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, P.Z. Ying, Y.H. Qianga and S.G. Sun, Physical Chemistry Chemical Physics, 14(2012), 2617.
[50]M. Takahashi, S.I. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 148( 2002), 283.
[51]http://www.herc.com/foodgums/index.htm.
[52]H. Yamamoto and H. Mori, “SBR Binder (for Negative Electrode) and ACM Binder (for Positive Electrode)”.
[53]C.C. Li, J.H. Jean, Materials Chemistry and Physics, 94(2005), 78.
[54]C.C. Li, J.T. Lee, Y.L. Tung, C.R. Yang, Journal of Material Science, 42(2007), 5773.
[55]Measuring Zeta Potential in Concentrated Colloids, The Colloidal Dynamics ZetaProbe.
[56]C.C. Li, J.T. Lee, X.W. Peng, Journal of Electrochemical Society, 153(2006), 809.
[57]C. A. Mitchell and R. Krishnamoorti, Macromolecules, 40(2007), 1538.
[58]Y.S. Song, J.R. Youn, carbon, 43(2005), 1378.
[59]A.N. Dey and B.P. Sullivan, Journal of The Electrochemical Society, 117(1970), 222.
[60]H. Zheng, G. Liu, X. Song, P. Ridgway, S. Xun and V.S. Battaglia, Journal of The Electrochemical Society, 157(2010), 1060.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊