跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭捷升
研究生(外文):Chieh-Sheng Cheng
論文名稱:SiO2-Al2O¬3-Y2O3-ZnO密封玻璃應用於固態氧化物燃料電池之研發
論文名稱(外文):Development of SiO2-Al2O3-Y2O3-ZnO based glass sealant for Solid Oxide Fuel Cells
指導教授:王錫福
口試委員:段維新林永仁吳玉娟徐永富
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:固態氧化物燃料電池玻璃封裝漏氣率玻璃膏
外文關鍵詞:Solid Oxide Fuel CellGlassSealLeak Rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為開發無添加B2O3及鹼土族的封裝玻璃,以SiO2-Al2O3-Y2O3-ZnO系統,並且複合高膨脹係數陶瓷粉末製備玻璃封裝膏,應用於固態氧化物燃料電池之高溫封裝。藉由不同的ZnO添加量來調整玻璃轉換溫度(Tg),使玻璃在SOFC應用溫度時表現出軟化流動特性,來填補縫隙達到密封效果。而研究中也發現ZnO含量的添加會使玻璃結晶溫度(Tc)下降,當ZnO添加量使ZnO/SiO2比大於1時,玻璃熱處理時結晶現象越明顯。而在不鏽鋼與玻璃黏合方面YAS4-50、YAS5-50及YAS5-90在與不鏽鋼黏合時有良好的潤濕性,可有效的與不鏽鋼緊密黏合。在未複合陶瓷粉末前其玻璃漏氣率量測以YAS1-50及YAS5-50玻璃漏氣率為最低,其在700oC持溫5 hr、荷重為1 psi及進氣壓力為1 psi的條件下,YAS1-50及YAS5-50在高溫漏氣率分別為0.028 sccm/cm及0.09 sccm/cm,而當玻璃經過熱膨脹係數調整過後YAS5-50環漏氣率可由0.09 sccm/cm下降至0.04 sccm/cm,且常溫區漏氣率也有下降的趨勢,由0.185 sccm/cm下降到0.148 sccm/cm。因此玻璃在複合高膨脹係數陶瓷粉末後,能有效降低玻璃高溫與低溫時的漏氣率,在SOFC應用上是非常有潛力的。

This study was to develop SiO2-Al2O3-Y2O3-ZnO system glasses free of B2O3 and Alkaline earth metals, and composite with high expansion coefficient ceramic powder sealants for SOFC applications. By adding ZnO to reduce the glass transition temperature (Tg), glass was softening in SOFC application temperature and its cracks was filled and sealed. It was also found that crystallization temperature (Tc) decreased when adequate ZnO was added (ZnO/SiO2 > 1). The glass crystallization was more significant. In this study, the glass YAS4-50, YAS5-50, and YAS5-90 with better wettability could effectively bond with stainless steel. At the temperature of 700oC, compressive stress 1 psi, and pressure at Plate 1 psi, leak rate of glass YAS1-50 and YAS5-50 was lowest before compositing with ceramic powder. Leak rate of YAS1-50 was 0.028 sccm/cm and YAS5-50 was 0.09 sccm/cm. After adjusting the coefficients of thermal expansion, leak rate of YAS5-50 was decreased from 0.09 sccm/cm to 0.04 sccm/cm. The leak rate was also decreased at room temperature, from 0.185 sccm/cm to 0.148 sccm/cm. Result mentioned above indicates leak rate of glass was significantly decreased after compositing with high expansion coefficient ceramic powder, which supports further study in SOFC applications.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
第二章 基礎理論與文獻回顧 4
2.1 SOFC封裝特點與需求 4
2.2 壓合式密封(Compressive Seal) 5
2.2.1 金屬壓合密封 5
2.2.2 陶瓷雲母壓合式密封 6
2.3 剛性密封(Rigid Seal) 8
2.3.1 銅焊(Brazes) 8
2.3.2 玻璃陶瓷 9
2.4玻璃陶瓷複合封裝 10
2.5玻璃概說 11
2.5.1玻璃熱性質及相變化 12
2.5.2氧化物的添加及目的 13
2.6玻璃與不鏽鋼黏合理論 16
2.6.1接觸角理論 16
2.6.2機械力黏合理論 17
2.6.3共熔黏合理論 18
2.6.4化學黏合 19
2.7漏氣率之相關研究及測漏設備 19
2.8本實驗室歷年封裝玻璃系統回顧 25
第三章 實驗方法及步驟 26
3.1實驗藥品 26
3.2實驗流程 27
3.3實驗設備及方法 30
3.3.1玻璃鑑定之XRD分析 30
3.3.2玻璃之DTA分析 30
3.3.3玻璃之熱膨脹係數分析 31
3.3.4玻璃軟化點分析 32
3.3.5玻璃熱穩定分析 33
3.3.6玻璃黏合不鏽鋼分析 33
3.3.7 玻璃膨脹係數的提升-複合陶瓷 34
3.3.8玻璃高溫封裝-連續漏氣率量測系統 36
第四章 結果與討論 37
4.1玻璃鑑定及基本熱性質 37
4.1.1 XRD相鑑定分析 37
4.1.2玻璃之DTA分析 38
4.1.3玻璃軟化點分析 42
4.1.4玻璃熱膨脹係數分析 44
4.2玻璃熱穩定性分析 49
4.3不鏽鋼黏合測試及界面反應 52
4.3.1玻璃黏合篩選 52
4.3.2玻璃黏合溫度表面形貌 55
4.3.3斷面觀察與界面反應 56
4.4玻璃漏氣率量測分析 61
第五章 結論 66
參考文獻 68

[1] J. Pu, Y. Ye, D. Yan, X. Wang, B. Chi and J. Li, ”Development of novel glass-based composite seals for planar intermediate temperature solid oxide fuel cells,” International Journal of Hydrogen energy.37 (2012) pp. 1710-1716.
[2] K. Lu, ”Glass-based seals for solid oxide fuel and electrolyzer cells – A review,” Materials Science and Engineering. 67 (2010) pp. 65–85.
[3] S.F. Wang, Y.R. Wang, Y.F. Hsu and C.C. Chuang, ”Effect of additives on the thermal properties and sealing characteristic of BaO-Al2O3-B2O3-SiO2 glass-ceramic for solid oxide fuel cell application,” International Journal of Hydrogen Energy.34 (2009) pp. 8235–8244.
[4] J.W. Fergus, ”Sealants for solid oxide fuel cells,” journal power sources. 147 (2005) pp. 46–57.
[5] K.S. Weil and B.J. Koeppel, ”Thermal stress analysis of the planar SOFC bonded compliant seal design,” International Journal Hydrogen Energy 33 (2008) pp. 3976–3990.
[6] S. Ghosh, A.D. Sharma, P. Kundu and R.N. Basu, ”Glass-Ceramic Sealants for Planar IT-SOFC: A Bilayered Approach for Joining Electrolyte and Metallic Interconnect,” Journal of the Electrochemical Society. 155 (2008) pp. B476-B478.
[7] Jeffrey and W. Fergus, ”Sealants for solid oxide fuel cells,” Journal Power Sources 147 (2005) pp. 46–57.
[8] J. Duquette and A. Petric, ”Silver wire seal design for planar solid oxide fuel cell stack,” Journal Power Sources. 137 (1) (2004) pp. 71–75.
[9] Y.S. Chou and J.W. Stevenson., ” Novel silver / mica multilayer compressive seals for solid-oxide fuel cells: The effect of thermal cycling and material degradation on leak behavior,”Jounrnal of Materials Research. 18 (9) (2003) pp. 2243–2250.
[10] P. Singh, Z. Yang, V. Viswanathan and J.W. Stevenson., “Observations on the structural degradation of silver during simultaneous exposure to oxidizing and reducing environments,” Journal of Materials Engineering and Performance. 13 (3) (2003) pp. 287–294.
[11] M. Bram, S. Reckers, P. Drinovac, J. Moench, R.W. Steinbrech, H.P. Buchkremer and D. Stoever, ”Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks,” Journal Power Sources. 138 (1–2) (2004) pp. 111–119.
[12] Y.S. Chou and J.W. Stevenson, ”Phlogopite mica-based compressive seals for solid oxide fuel cells: effect of mica thickness,” Journal Power Sources. 124 (2003) pp. 473–478.
[13] S. Le, K. Sun, N. Zhang, Y. Shao, A. Maozhong, Q. Fu and X. Zhu, ”Comparison of infiltrated ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells,” Journal of Power Sources 168 (2007) pp. 447–452.
[14] M. Rautanen, O. Himanen, V. Saarinen and J. Kiviaho, ”Compression Properties and Leakage Tests of Mica-Based Seals for SOFC Stacks,” DOI: 10.1002/fuce. 200900029. 9 (5) (2009) pp. 753-759.
[15] S.P. Simner and J.W. Stevenson, ”Compressive mica seals for SOFC applications,” Journal of Power Sources. 102 (2001) pp. 310–316.
[16] Y.S. Chou and J.W. Stevenson, L.A. Chick., ”Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells,” Journal of Power Sources. 112 (2002) pp. 130.
[17] Y.S. Chou, J.W. Stevenson and P. Singh, ”Thermal cycle stability of a novel glass–mica composite seal for solid oxide fuel cells – effect of glass volume fraction and stresses,” Journal of Power Sources.152 (2005) pp. 168–174.
[18] R.J. Boersma, N.M. Sammes and Y. Zhang, ”Measurement of Properties of Sealant Materials for Solid Oxide Fuel Cell Systems,” Journal Australas. Ceramic Society. 34 (1) (1998) pp. 242–247.
[19] Z. Yang, K.S. Weil, D.M. Paxton and J.W. Stevenson, ”Selection and evaluation of heat-resistant alloys for SOFC interconnect applications,” Journal of the Electrochemical Society. 150 (2003) pp. A1188.
[20] J. Laurencin, B. Morel , Y. Bultel and J.F. Lefebvre, ”Thermo-mechanical model of solid oxide fuel cell fed with methane, ” Journal Fuel Cells.6 (2006) pp. 64.
[21] S.Shaffer, ”Development update on Delphi’s solid oxide fuel cell system,” paper presented at the (2004) Solid State Energy Conversion Alliance Meeting, Boston, MA)
[22] H.Nishiura, R.O.Suzuki and K.Ono., ”Experimental phase diagram in the Ag-Cu2O-CuO system,” Journal American Ceramic Society. 81 (8) (1998) pp. 2181–2187.
[23] K.S.Weil, J.Y. Kim, J.S. Hardy and Electrochem., ”Reactive air brazing: a novel method of aealing SOFCs and other solid-state electrochemical devices,” Solid State Lett. 8 (2) (2005) pp. A133–A136.
[24] J.S. Hardy, J.Y. Kim and K.S. Weil, ”Joining mixed conducting oxides using an air-fired electrically conductive braze,” Journal of the Electrochemical Society. 151 (8) (2004) pp. 43–49.
[25] C. Michael, Tucker, P.C. Jacobson, C.L. Jonghe and J. Steven , “A braze system for sealing metal-supported solid oxide fuel cells, ” Journal of Power Sources. 160 (2006) pp. 1049–1057.
[26] K.S. Weil and D.M. Paxton., ”Development of an oxidation resistant ceramic–to-metal braze for use in YSZ-based electrochemical devices,” Ceramics Engineering Sciences. 23 (3) (2002) pp. 785–792.
[27] K.S. Weil, C.A. Coyle, J.T. Darsell, G.G. Xia and J.S. Hardy, ”Effects of thermal cycling and thermal aging on the hermeticity and strength of silver–copper oxide air-brazed seals,” Journal Power Sources. 152 (2005) pp. 97–104.
[28] P.H. Larsen, F.W. Poulsen and R.W. Berg, ”The influence of SiO2 addition to 2MgO–Al2O3–3.3P2O5 glass,” Journal Non-Crystal Solids. 244 (1999) pp. 16-24.
[29] S. Taniguchi, M. Kadowaki and T. Yasuo, ”Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material,” Journal Power Sources.90 (2000) pp. 163-169.
[30] K. Eichler, G. Solow and P. Otschik, ”BAS (BaO-Al2O3-SiO2)-glasses for high temperature applications,” Journal European Ceramic Society. 19 (1999) pp.1101-1104.
[31] I.D. Bloom and K.L. Ley, ”Compliant sealants for solid oxide fuel cells and other ceramics,” US PATENT 5453331. (1995).
[32] C. Lara, M.J. Pascual and A. Duran, ”Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn),” Journal Non-Crystal Solids. 348 (1999) pp. 149-155.
[33] C. Lara, M.J. Pascual and A. Duran, ”Sintering of glasses in the system RO–Al2O3–BaO–SiO2 (R= Ca, Mg, Zn) studied by hot-stage microscopy,” Solid State Ionics.170 (2004) pp. 201-208.
[34] C. Lara, M.J. Pascual and A. Duran, ”Electrical behaviour of glass–ceramics in the systems RO–BaO–SiO2 (R = Mg, Zn) for sealing SOFCs,” Journal Power Sources. 157 (2006) pp. 377-384.
[35] C. Lara, M.J. Pascual and A. Duran, ”Glass-forming ability, sinter ability and thermal properties in the systems RO-BaO-SiO2 (R=Mg, Zn) ,” Journal Non-Crystal Solids. 348 (1999) pp.149–155.
[36] M.J. Pascual, A. Guillet and A. Duran, ”Optimization of glass–ceramic sealant compositions in the systemMgO–BaO–SiO2 for solid oxide fuel cells (SOFC),” Journal Power Sources. 169 (2007) pp.40-6.
[37] Y.S. Chou, J.W. Stevenson and P. Singh, ”Effect of pre-oxidation and environmental aging on the seal strength of a novel hightemperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect,” Journal Power Sources. 184 (2008) pp.238-244.
[38] Y.S. Chou, J.W. Stevenson, J. Hardy and P. Singh, ”Material degradation during isothermal ageing and thermal cycling of hybrid mica seals under solid oxide fuel cell exposure conditions,” Journal Power Sources. 157 (2006) pp.260-270.
[39] K. Eichler, G. Solow and P. Otschik, ”BAS(BaO-Al2O3-SiO2)-glasses for high temperature applications,” Journal of the European Ceramic Society. 9 (1999) pp. 1101-1104.
[40] S. Ghosh, A.D. Sharma, P. Kundu, S. Mahanty and R.N. Basu, ”Development and characterizations of BaO–CaO–Al2O3–SiO2 glass–ceramic sealants for intermediate temperature solid oxide fuel cell application,” Journal Non-Crystal Solids.354 (2008) pp.4081-8.
[41] M.K. Mahapatra, K. Lu and W.T. Reynolds, ”Thermophysical properties and devitrification of SrO-La2O3-Al2O3-B2O3-SiO2 based glass sealant for solid oxide fuel/electrolyzer cells,” Journal Power Sources. 179 (2008) pp. 106-112.
[42] S. Ghosh, P. Kundu, A.D. Sharma, R.N Basu and H.S. Maiti , ”Microstructure and property evaluation of barium aluminosilicate glass–ceramic sealant for anode-supported solid oxide fuel cell, ” Journal of the European Ceramic Society. 28 (2008) pp. 69-76.
[43] C. Story, K. Lu, W.T. Reynolds and D. Brown, ”Shape memory alloy/glass composite seal for Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy. 33 (2008) pp. 3970-3975.
[44] M.K. Mahapatra and K. Lu, ”Effects of nickel on network structure and thermal properties of a new solid oxide cell seal glass,” Journal Power Sources. 185 (2008) pp. 993-1000.
[45] K. Lu and M.K. Mahapatra, ”Network structure and thermal stability study of high temperature seal glass,” Journal of Applied Physics. 104 (7) (2009) pp. 074910.
[46] S. Sakuragi, Y. Funahasshi, T. Suzuki, Y. Fujishiro and M. Awano, ”Non-alkaline glass–MgO composites for SOFC sealant,” Journal Power Sources. 185 (2008) pp.1311-1314.
[47] V. Kumar, A. Arora, O.P. Pandey and K. Singh,”Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells,” International Journal of Hydrogen Energy. 33 (2008) pp.434-438.
[48] N. Lahl, K. Singh, L. Singheiser, K. Hilpert and D. Bahadur, ”Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg),” Journal of Mater Science 35(2000) pp. 3089-3096.
[49] N. Lahl, D. Bahadur, K. Singh, L. Singheiser and K. Hilpert, ”Chemical interactions between aluminosilicate base sealants and the components on the anode side of solid oxide fuel cells,” Journal of the Electrochemical Society. 149 (2002) pp.A607-A614.
[50] R. Zheng, S.R. Wang, H.W. Nie and T.L Wen, ”SiO2-CaO-B2O3-Al2O3 Ceramic glaze as sealant for planar ITSOFC,” Journal Power Sources. 128 (2004) pp.165-172.
[51] N.P. Bansal and E.A. Gamble, ”Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis,” Journal Power Sources. 147 ( 2005) pp. 107-115.
[52] A. Goel, D.U. Tulyaganov, I.K. Goel, Shaaban ER and Ferreira JMF, ”Effect of BaO on the crystallization kinetics of glasses along the Diopside-Ca-Tschermak join,” Journal Non-Crystal Solids. 355 (2009) pp. 193-202.
[53]S.R. Choi, N.P. Bansal and A. Garg, ”Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite,” Materials Science and Engineering A. (2007) pp. 460-461.
[54] S. Taniguchi, M. Kadowaki and T. Yasuo, ”Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material,” Journal Power Sources. 90 (2000) pp.163-9.
[55]S.P. Jiang, L. Christiansen, B. Hughan and K. Foger, ”Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes,” Journal of Materials Science Letters. 20 (2001) pp. 695– 697.
[56] K.L. Ley, M.K rumpelt, R. Kumar, J.H. Meiser and I.D. Bloom, Journal Materials Research. 11 (6) (1996) pp.1489–1493.
[57] G.L. Thomas, ”Seal glass composition,” US Patent 4737685 (12 April 1988).
[58] M. Sonja Gros, K. Thomas, R. Josef and J. B. Reisgen, “Joining properties of a composite glass-ceramic sealant,” Fuel Cells Bulletin. 9 (2006) pp. 12-15.
[59] K.A. Nielsen, M. Solvang, S.B.L. Nielsen, A.R. Dinesen, D. Beeaff and P.H. Larsen, ”Glass composite seals for SOFC application,” Journal of the European Ceramic Society. 27 (2007) pp. 1817–1822.
[60] S. Satomi, F. Yoshihiro, S. Toshio, F. Yoshinobu and A. Masanobu, ”Non-alkaline glass–MgO composites for SOFC sealant”, Journal of Power Sources. 185 (2008) pp.1311–1314
[61] G. Ashutosh, J.P. Maria and M. Ferreira, ”Stable glass-ceramic sealants for solid oxide fuel cells: Influence of Bi2O3 doping ,” International Journal of Hydrogen Energy. 35 (2010) pp. 6911-6923.
[62] Y. Yanan, D.Yan, X. Wang, J. Pu, B. Chi and J. Li, ”Development of novel glass-based composite seals for planar intermediate temperature solid oxide fuel cells, ” International Journal Of Hydrogen Energy. 37 (2012) pp. 1710-1716.
[63] 西北輕工業學院等人,玻璃工藝學,北京:中國輕工業出爯社,2005,第2-8頁。
[64] W.H. Zachariasen., ”The atomic arrangement in glass,” Journal American Chemical Society. 54 (1932) pp. 3841-3851.
[65] 邱標麟,玻璃製造學,台北:復文書局,1979,第1-15頁。
[66]I.W. Donald, ”Review Preparation, properties and chemistry of glassand glass-ceramic-to-metal seals and coatings,” Journal Materials Science. 28 (1993) pp. 2841-2886.
[67] Y.S. Chou, E.C. Thomsen, J.P. Choi and J.W. Stevenson, ”Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels,” Journal of Power Sources. 197 (2012) pp.154-160.
[68] L. Peng and Q.S. Zhu, ”Thermal cycle stability of BaO–B2O3–SiO2 sealing glass,” Journal of Power Sources. 194 (2009) pp. 880–885.
[69] L. Shiru, S. Kening, N. Zhang , A. Maozhong, D. Zhou, J. Zhang and D. Li, ”Novel compressive seals for solid oxide fuel cells,” Journal of Power Sources. 161 (2006) pp. 901–906.
[70]S. Sanga, J.Pua, B. Chi and J. Li, ”Model-oriented cast ceramic tape seals for planar solid oxide fuel cells,” Journal of Power Sources. 193 (2009) pp. 723-729.
[71] 莊青錦,固態氧化物燃料電磁之研究,碩士論文,國立臺北科技大學材料科學研究所,台北,2008。
[72] 呂健銘,固態氧化物燃料電池玻璃封裝材料開發與研究,碩士論文,國立臺北科技大學材料科學研究所,2010。
[73] 羅士傑,SiO2-SrO-Al2O3-La2O3玻璃陶瓷應用於固態氧化物燃料電池之密封材料特性分析,碩士論文,國立臺北科技大學材料科學研究所,2011。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊