跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王永伯
研究生(外文):Yung-Po Wang
論文名稱:銅系赤銅鐵礦薄膜之製備及其抗菌特性之研究
論文名稱(外文):Preparation of Cu-based delafossite thin films and its antibacterial properties
指導教授:邱德威
指導教授(外文):Te-Wei Chiu
口試委員:施文欽朱瑾
口試委員(外文):Wen-Ching ShihJinn P Chu
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:寬能隙半導體赤銅鐵礦p型傳導特性抗菌薄膜
外文關鍵詞:wide-bandgap semiconductordelafossitep-type conductivityantibacterial thin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
赤銅鐵礦p型透明導電氧化物(TCO)如CuYO2、CuCrO2與CuAlO2逐漸受到學者研究興趣而使p型TCO發展逐年成熟。而目前絕大部分赤銅鐵礦薄膜由真空設備沉積成膜,如脈衝雷射沉積(pulsed laser deposition, PLD)及磁控濺鍍法(Magnetron Sputtering),其優點為成膜均勻、雜質含量少及特性佳等優點。相較之下以化學溶液法沉積赤銅鐵礦薄膜則具有製程簡便及設備需求低等優點。
故本實驗以化學溶液法及濺鍍法沉積n型及p型高能隙透明半導體,探討不同熱處理氣氛及溫度條件對其性質之影響。熱處理後試片以X光繞射分析儀分析結構、以UV-Visible分析穿透率、以四點探針及霍爾量測儀量測電性。
本實驗首次將p型透明半導體應用於透明抗菌塗層。利用其係p型寬能隙半導體光觸媒特性及其銅離子釋放之特性,成功製備透明抗菌塗層。根據台灣光觸媒產業發展協會TPIA-B1及ISO 22196規範進行赤銅鐵礦薄膜之抗菌特性之研究,其高抗菌效率及高穿透率性質在抗菌塗層具有良好的應用。


Transparent conducting oxides (TCOs) are attracting more and more attention. In general, most of the known TCOs are n-type materials. However, delafossite films, such as CuYO2, CuCrO2, and CuScO2, etc., have attracted considerable scientific and technological attention. Up to now, most delafossite films have been prepared by vacuum-based methods with advantages of the thin film uniformity, less impurity content and well performance, such as pulsed laser deposition (PLD) and magnetron sputtering. The advantages of delafossite thin films prepared by chemical solution deposition is the capability to coat materials of various shapes and large area, to control the composition easily for obtaining solutions of homogeneity and controlled concentration without using expensive equipment.
Delafossite thin films are prepared on glass substrates by ratio frequency (rf) magnetron sputtering and chemical solution deposition. All the conditions in both deposition methods are investigated in order to produce delafossite thin films with better performance in conductivity and optical transmittance. Annealing conditions are investigated in order to produce delasossite phase p-type conductive thin films, such as ambient gas and temperature. The crystalline structure of thin films was confirmed by glancing incident angle X-ray diffraction. Field emission scanning electron microscope was used to observe the surface morphology and cross-section of thin films. The transmittance of the thin films in visible region was measured by UV-Visible spectrometer. The electrical properties were obtained by four-point-probe. The hole concentration and hole mobility were measured by Hall Effect Analyzer, respectively.
In this research, the anti-bacterial properties of delafossite thin film surfaces against Escherichia coli (E. coli) bacteria were investigated. Copper based delafossite thin films were prepared on glass substrates by sputtering and chemical solution deposition, respectively. Annealing conditions, such as ambient gas and temperature, are investigated. The ISO 22196 method was utilized to evaluate the colony forming unit (CFU) of E. coli on the thin film surface after incubation. The experimental results show the thin film surface exhibiting superior antibacterial performance and high optical transparency of thin films. A novel transparent anti-bacterial coating has been first demonstrated in present study.


ABSTRACT ii
誌 謝 iv
TABLE OF CONTENTS v
List of Figures viii
List of Tables xi
Chapter 1
1 Introduction 1
1.1 Delafossite structure 1
1.2 Transparent conducting oxide thin films (TCO) 2
1.2.1 Electrical properties of p-TCO 5
1.2.2 Optical properties of p-TCO 9
1.2.3 Antibacterial properties of p-TCO 10
1.3 Transparent junctions 11
1.4 Preparation methods of thin films 12
1.4.1 Sol-gel processing of thin films with metal salts 12
1.4.2 Spin coating process theory 13
1.4.3 Sputtering method 16
1.4.4 Substrates pretreatment 19
1.5 Instruments for thin film preparation 20
1.5.1 Spin coating 20
1.5.2 Sputtering 20
1.5.3 Annealing 22
1.6 Characteristic analysis 22
1.6.1 Crystalline determination 22
1.6.2 Scanning electron microscope image observation 23
1.6.3 Electrical properties 24
1.6.4 Optical properties 25
1.6.5 Antibacterial properties 27
1.7 Aim of this work 30
Reference 31
Chapter 2
Preparation of Cu-Cr-O thin films by RF magnetron sputtering 37
2.1 Introduction 37
2.2 Experimental 38
2.2.1 Target preparation 38
2.2.2 Thin film deposition 39
2.2.3 Post-deposition annealing of thin films 39
2.2.4 Thin film characterization 40
2.3 Result and discussion 41
2.3.1 Crystalline structure determination 41
2.3.2 Optical properties of CuCrO2:Mg thin film 44
2.3.3 Electrical properties of CuCrO2:Mg thin films 47
2.3.4 Antibacterial properties of CuCrO2:Mg thin films 49
2.4 Conclusions 51
Reference 52
Chapter 3
Preparation of Cu-Y-O thin films by chemical solution deposition and preparation of sputtering target 53
3.1 Introduction 53
3.2 Experimental 54
3.2.1 Preparation of Cu-Y-O precursor solution 54
3.2.2 Spin coating deposition 54
3.2.3 Post deposition annealing of thin films 55
3.2.4 Cu-Y-O target preparation 55
3.2.5 Characterization 56
3.3 Result and discussion 56
3.3.1 Crystalline structure determination 56
3.3.2 FESEM observation of Cu-Y-O thin film 59
3.3.3 Optical properties of Cu-Y-O thin film 60
3.3.4 Antibacterial properties of Cu-Y-O thin films 64
3.3.5 Crystalline structure analysis of Cu-Y-O sputtering target 66
3.4 Conclusions 67
Reference 69
Chapter 4
Preparation of Cu-Al-O thin films by RF magnetron sputtering 70
4.1 Introduction 70
4.2 Experimental 71
4.2.1 Target preparation 71
4.2.2 Thin film deposition 71
4.2.3 Post-deposition annealing of thin films 72
4.2.4 Thin film characterization 73
4.3 Result and discussion 74
4.3.1 Crystalline structure determination of sputtering target 74
4.3.2 Cu-Al-O thin films deposited on silicon annealed with condition 1 75
4.3.3 Cu-Al-O thin films deposited on silicon annealed with condition 2 79
4.3.4 Cu-Al-O thin films deposited on silicon annealed with condition 3 81
4.3.5 Cu-Al-O thin films deposited on silicon annealed with condition 4 83
4.3.6 Cu-Al-O thin films deposited on quartz annealed with condition 4 85
4.4 Conclusions 89
Reference 90
Chapter 5
Preparation of Cu-Sr-O RF magnetron sputtering target 91
5.1 Introduction 91
5.2 Experimental 92
5.2.1 Target preparation 92
5.2.2 Target characterization 93
5.3 Result and discussion 93
5.4 Conclusions 97
Reference 98
Chapter 6
Summary 99
6.1 Summary of this work 99
6.2 Future work 101
Paper publications 103
Conference Presentations 103


Chapter 1

[1] B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, A.J. Freeman, Phys. Rev. B 64 (2001) 155114.
[2] N. Duan, A.W. Sleight, M.K. Jayaraj, J. Tate, Appl. Phys. Lett. 77 (2000) 1325.
[3] R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, J. Appl. Phys. 89 (2001) 8022.
[4] M.K. Jayaraj, A.D. Draeseke, J. Tate, A.W. Sleight, Thin Solid Films 397 (2001) 244.
[5] L.F. Mattheiss, Phys. Rev. B 48 (1993) 18300.
[6] G. Thomas, Nature 389 (1997) 907.
[7] K. Badekar, Ann. Phys. (Leipzig) 22 (1907) 749.
[8] C.M. Lampert, Sol. Energy Mater. 6 (1981) 1.
[9] K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102 (1983) 1.
[10] I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60 (1986) R123.
[11] L. Holland, Vacuum Deposition of Thin Films, Wiley, New York, 1958.
[12] H. Cachet, A. Gamard, G. Campet, B. Jousseaume, T. Toupance, Thin Solid Films 388 (2001) 41.
[13] R. Wendt, K. Ellmer, Surf. Coat. Technol. 93 (1997) 27.
[14] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, IOP Publishing Ltd., Bristol and Philadelphia, 1995.
[15] D.S. Ginley, C. Bright, MRS Bull. (August 2000) 15.
[16] R.J. Cava, J.M. Philips, J. Kwo, G.A. Thomas, R.B. van Dover, S.A. Carter, J.J. Krajewski, W.F. Peck Jr., J.H. Marshall, D.H. Rapkin, Appl. Phys. Lett. 64 (1994) 2071.
[17] J.M. Philips, R.J. Cava, G.A. Thomas, S.A. Carter, J. Kwo, T. Siegrist, J.J. Krajewski, J.H. Marshall, W.F. Peck Jr., D.H. Rapkine, Appl. Phys. Lett. 67 (1995) 2246.
[18] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, T.J. Marks, MRS Bull. (August 2000) 45.
[19] R.G. Gordon, MRS Bull. (August 2000) 52.
[20] J.M. Mochel, U.S. Patent No. 2,564,706, 1947.
[21] W.R. Sinclair, F.G. Peters, D.W. Stillinger, S.E. Koonce, J. Electrochem. Soc. 112 (1965) 1096.
[22] W.O. Lytle, A.E. Junge, U.S. Patent No. 2,566,346, 1951.
[23] R.G. Gordon, U.S. Patent No. 4,146,657, 1979.
[24] A.N. Banerjee, S. Kundoo, P. Saha, K.K. Chattopadhyay, J. SoleGel Sci. Technol. 28 (2003) 105.
[25] A.N. Banerjee, R. Maity, S. Kundoo, K.K. Chattopadhyay, Phys. Status Solidi A 201 (2004) 983.
[26] S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 122 (1984) 31.
[27] T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys., Part 2: Lett. 23 (1984) L280.
[28] J. Hu, R.G. Gordon, Sol. Cells 30 (1991) 437.
[29] P.S. Vijayakumar, K.A. Blaker, R.D. Welting, B. Wong, A.T. Halani, C. Park, U.S. Patent No. 4,751,149, (1988).
[32] B.H. Choi, H.B. Im, J.S. Song, K.H. Yoon, Thin Solid Films 193 (1990) 712.
[31] J. Hu, R.G. Gordon, J. Appl. Phys. 72 (1992) 5381.
[32] J.M. Mochel, U.S. Patent No. 2,564,707, (1951).
[33] L. Holland, G. Siddall, Vacuum III (1955).
[34] J.N. Avaritsiotis, R.P. Howson, Thin Solid Films 77 (1981) 351.
[35] R. Groth, Phys. Status. Solidi 14 (1966) 69.
[36] A.J. Nozik, U.S. Patent No. 3,811,953, (1974).
[37] G. Haacke, W.E. Mealmaker, L.A. Siegel, Thin Solid Films 55 (1978) 67.
[38] J.L. Vossen, RCA Rev. 32 (1971) 269.
[39] H. Enoki, T. Nakayama, J. Echigoya, Phys. Status Solidi A 129 (1992) 181.
[40] T. Minami, H. Sonohara, S. Takata, H. Sato, Jpn. J. Appl. Phys., Part 2: Lett. 33 (1994) L1693.
[41] R.J. Cava, S.Y. Hou, J.J. Krajewski, J.H. Marshall, W.F. Pack, D.H. Rapkin, R.B. van Dover, Appl. Phys. Lett. 65 (1994) 115.
[42] T. Otabe, K. Ueda, A. Kudoh, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 72 (1998) 1036.
[43] S.E. Dali, M. Jayachandran, M.J. Chockalingam, J. Mater. Sci. Lett. 18 (1999) 915.
[44] D.D. Edwards, T.O. Mason, F. Goutenoire, K.R. Poeppelmeier, Appl. Phys. Lett. 70 (1997) 1706.
[45] T. Minami, S. Takata, T. Kakumu, H. Sonohara, Thin Solid Films 270 (1995) 22.
[46] T. Minami, T. Kakumu, K. Shimokawa, S. Takata, Thin Solid Films 317 (1998) 318.
[47] T. Omata, N. Ueda, K. Ueda, H. Kawazoe, Appl. Phys. Lett. 64 (1994) 1077.
[48] D.R. Kammler, T.O. Mason, D.L. Young, T.J. Coutts, J. Appl. Phys. 90 (2001) 3263.
[49] T. Minami, MRS Bull. August (2000) 38.
[50] B.G. Lewis, D.C. Paine, MRS Bull. August (2000) 22.
[51] C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Ronnow, M.S. Mattson, M. Veszelei, G. Vaivars, Sol. Energy 63 (1998) 199.
[52] D.R. Kammler, D.D. Edwards, B.J. Ingram, T.O. Mason, G.B. Palmer, A. Ambrosini, K.R. Poeppelmeier, in: V.K. Kapur, R.D. McConnel, D. Carlson, G.P. Ceasan, A. Rohatgi (Eds.), Photovoltaics for the 21st Century. The Electrochemical Society Proceedings, Pennington NJ, 99-11 (1999) 68.
[53] S.H. Lee, K.H. Hwang, S.K. Joo, in: K.C. Ho, D.A. McArthur (Eds.), Electrochromic Materials, Second International Symposium, The Electrochemical Society Proceedings, Pennington NJ, 94-2 (1994) 290.
[54] P.S. Lugg, S. Bommarito, J. Bailey, K. Budd, P. Cullen, K. Chen, L.C. Hardy, M. Nachbor, in: Solid State Ionic Devices, The Electrochemical Society Proceedings, Pennington NJ, 99-13 (1999) 284.
[55] Y. Nakato, K.I. Kai, K. Kawabe, Sol. Energy Mater. Sol. Cells 37 (1995) 323.
[56] T.T. Emons, J. Li, L.F. Nazar, J. Am. Chem. Soc. 124 (2002) 8517.
[57] M.G. Hutchins, G.D. McMeeking, Biosensor Patent No. 90,27,607.2, (1990).
[58] Y. He, J. Kanicki, Appl. Phys. Lett. 76 (2000) 661.
[59] J.F. Wager, Science 300 (2003) 1245.
[60] C.M. Lampert, Sol. Energy Mater. 21 (1990) 191.
[61] C. Grivas, S. Mallis, L. Boutsikaris, D.S. Gill, N.A. Vainos, P.J. Chandler, Laser Phys. 8 (1998) 326.
[62] K. Moschovis, E. Gagaoudakis, E. Chatzitheodoridis, G. Kiriakidis, S. Mailis, E. Tzamali, N.A. Vainos, H. Fritzsche, Appl. Phys. A 66 (1998) 651.
[63] S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forest, Nature 426 (2003) 166.
[64] R.A. Hayes, B.J. Feenstra, Nature 425 (2003) 1038.
[65] R.L. Cornia, J.B. Fenn, H. Memarian, R. Ringer, Proceedings of 41st Annual Technical Conference, Boston, SVC (1998) 452.
[66] D.R. Cairns, R.P. Witte, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, R. Newton, Appl. Phys. Lett. 76 (2000) 1425.
[67] C.H. Seager, D.C. McIntyre, W.L. Warren, B.A. Tuttle, Appl. Phys. Lett. 68 (1996) 2660.
[68] M.W.J. Prince, K.O. Gross-Holtz, G. Muller, J.B. Cillessen, J.B. Giesbers, R.P. Weening, R.M. Wolf, Appl. Phys. Lett. 68 (1996) 3650.
[69] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389 (1997) 939.
[70] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236 (1993) 27.
[71] J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager, R.L. Hoffman, Thin Solid Films 411 (2002) 119.
[72] H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bull. August (2000) 28.
[73] S. Fraga, S. Karwowski, K.M.S. Saxena, Handbook of Atomic Data, Elsevier, Amsterdam (1976).
[74] P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Wiley-Interscience,New York, NY (1972).
[75] K. Koumoto, H. Koduka, W.S. Seo, J. Mater. Chem. 11 (2001) 251.
[76] S. H. Jeong, Y. H. Hwang, S. C. Yi. Journal of materials science, 40, (2005), 5413-5418.
[77] US Environmental Protection Agency (2008). www.epa.gov/pesticides/ factsheets/copper-alloy-products.htm.
[78] J. O. Noyce, H. Michels and C. W. Keevil: J. Hosp. Infect. 63 (2006) 289-297.
[79] J. O. Noyce, H. Michels and C. W. Keevil: Appl. Environ. Microbiol. 72 (2006) 4239-4244.
[80] A. C. Yeh, C. C. Huang, C. C. Hsiao, T. W. Chiu, Y. C. Yang, Y. W. Feng and K. Y. Lin, Materials Transactions, 52 (2011) 265-267.
[81] S. Saadi, A. Bouguelia and M. Trari, Solar Energy, 80 (2006) 272-280.
[82] W. Ketir , A. Bouguelia, M. Trari, J Hazard Mater., 158 (2008) 257-63.
[83] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U. L. Štangar, M. Bergant, D. Mahne, Nanotechnology 18 (2007) 375709.
[84] US Environmental Protection Agency, 2008. www.epa.gov/pesticides/ factsheets/copper-alloy-products.htm.
[85] J. O. Noyce, H. Michels and C. W. Keevil: J. Hosp. Infect. 63 (2006) 289-297.
[86] J. O. Noyce, H. Michels and C. W. Keevil: Appl. Environ. Microbiol. 72 (2006) 4239-4244.
[87] A.C. Yeh, C.C. Huang, C.C. Hsiao, T.W. Chiu, Y.C. Yang, Y.W. Feng and K. Y. Lin, Materials Transaction. 52 (2011) 265-267.
[88] S. Saadi, A. Bouguelia and M. Trari, Solar Energy. 80 (2006) 272-280.
[89] W. Ketir , A. Bouguelia, M. Trari, J Hazard Mater. 158 (2008) 257-63.
[90] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U. L. Štangar, M. Bergant, D. Mahne. Nanotechnology 18 (2007) 375709.
[91] S. Sakka, H. Kozuma. Handbook of sol-gel science and technology. Vol. 1. Sol-gel processing. (2004)
[92] K. Wasa, S. Hayakawa. Handbook of sputter deposition technology. (1991)

Chapter 2

[1] R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate. J. Appl. Phys. 89 (2001) 8022-8025.
[2] K. T. Jacob, G. M. Kale, G. N. K. Iyengar. J. Mater. Sci. 21 (1986) 2753-2758.
[3] T. W. Chiu, S. W. Tsai, Y. P. Wang, K.H. Hsu. Ceramics International. 38 (2012) S673-S676.
[4] T. W. Chiu, Y. C. Yang, A. C. Yeh, Y. P. Wang, Y. W. Feng. Vacuum, Available online 2 May 2012. In press.

Chapter 3

[1] R. Nagarajan, N. Duan, M. Jayaraj, J. Li, K. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A. Sleight, Int. J. Inorg. Mater. 3 (2001) 265.
[2] N. Tsuboi, K. Tosaka, S. Kobayashi, K. Kato, F. Kaneko. Preparation of delafossite-type CuYO2. Films by Solution Method. Japanese Journal of Applied Physics. 47 (2008) 588-591.
[3] T. W. Chiu, Y. C. Yang, A. C. Yeh, Y. P. Wang, Y. W. Feng. Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum, Available online 2 May 2012. In press.

Chapter 4

[1] H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono. Mater. Res. Bull. 25 (2000) 28
[2] A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe. Appl. Phys. Lett. (1999) 75 2851
[3] H. Ohta, K. I. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono. Appl. Phys. Lett. 77 (2000) 475.
[4] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanayi, H. Hosono. Nature 398 (1997) 939.
[5] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu. Japan. J. Appl. Phys. 2 36 (1997) L1453.
[6] A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe Appl. Phys. Lett. 73 (1998) 220
[7] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano J. Appl. Phys. 89 (2001) 1790.
[8] S. Ibuki, H. Yanagi, K. Ueda, H. Kawazoe, H. Hosono. Appl. Phys. Lett. 78 (2000) 367
[9] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, H. Hosono. Appl. Phys. Lett. 77 (2000) 2701
[10] R. S. Yu, C. J. Lu, D. C. Tasi, S. C. Liang, F. S. Shieu. Journal of the electrochemical society. 154 (9) H838-H843.

Chapter 5

[1] Von Chr. L. Teske, Hanskarl Mueller-Buschbaum, Z. Anorg. Allg. Chem. 379 (1970) 113-121.
[2] R.O. Suzuki, P. Bohac, L.J. Gauckler, J. Am. Ceram. Soc. 75 (1992) 2833
[3] C.L. Teske, H. Muller-Buschbaum, Z. Anorg. Allg. Chem. 379 (1970) 113-121.
[4] A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 73 (1998) 220.
[5] E. Bobeico, E. Varsano, C. Minarini, F. Roca, Thin Solid Films 444 (2003) 70.
[6] V. Varadarajan, D.P. Norton, J.D. Budai, Thin Solid Films 488 (2005) 173.
[7] B. Roy, A. Ode, D. Readey, J. Perkins, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Ginley, H. Hosono. National Renewable Energy Laboratory. May 2003.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top