跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧亮宇
研究生(外文):Liang-Yu Lu
論文名稱:電漿熔射噴塗製備金屬支撐型固態氧化物燃料電池之殘留應力分析與力學性質探討
論文名稱(外文):Mechanical properties and thermal stress investigations of metal supported SOFC by plasma spraying
指導教授:楊永欽楊永欽引用關係
指導教授(外文):Yung-Chin Yang
口試委員:葉安洲邱德威
口試委員(外文):An-Chou YehTe-Wei Chiu
口試日期:2012-06-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:大氣電漿熔射噴塗殘留應力鍵結強度
外文關鍵詞:Plasma sprayresidual stressbonding strength
相關次數:
  • 被引用被引用:2
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為利用X光繞射法量測使用大氣電漿熔射噴塗技術所製備之SOFC各層元件之殘留熱應變,陽極NiO/LDC、電解質LSGM及陰極層LSCF。三種試片應力分析之XRD圖譜顯示繞射晶格平面間距變化和試片傾斜角的關係,顯示三種塗層均承受到壓縮狀態的應變,以陽極的應變最大,陰極最小。由此可以推論陽極內的殘留應力應該是在SOFC此一多層結構的電池中扮演著重要的影響。
其次,研究中針對陽極塗層中熱應變的狀態進行量測,主要是比較塗層厚度改變以及噴塗前基材預熱溫度對殘留應力的影響。由實驗結果顯示,塗層厚度的改變對於塗層中壓縮殘留應力的影響不大,而噴塗前有預熱的基材會比未預熱之基材有較低的壓縮殘留應力。研究中也將探討塗層中不同的殘留應力值對於塗層與基材鍵結強度的影響。實驗結果顯示,噴塗過程中,基材溫度保持在600ºC左右之試片表現出最低的壓縮殘留應變(0.36%),同時具有最高的塗層鍵結強度(40.1 MPa)。
最後,藉由循環氧化與還原處理過程希望能了解SOFC在實際操作過程遭遇到的循環氧化還原過程對於各元件塗層中的殘留應力狀態。研究結果顯示,噴塗完成之各塗層試片(LSCM buffer, NiO/LDC, LDC buffer, LSGM, LSCF)均呈現壓縮狀態之殘留應變,這現象是與噴塗機制有關,一般塗層在經過試片冷卻過程都會呈現壓縮應變。將各噴塗後之塗層經氫氣還原、空氣氧化以及再次還原處理後,各塗層的應變狀態就會變的十分複雜。


In this study we deposited LSGM electrolytes, LSCF cathode and LDC/NiO anode coatings individually onto porous Ni-substrates by atmospheric plasma spray were prepared for residual stress analysis. A significant residual stress may lead to micro-cracks in the film or cause the film to peel off the substrate. Therefore, in this work, the biaxial residual stress states of SOFC components by using the sin2ψ technique of the XRD method were studied. The results show that the LDC/NiO anode displays the highest compressive residual strain among the three components.
Secondly, we study the biaxial residual stress states of SOFC anode coatings on Ni substrates by using the "sin2ψ" technique of the x-ray diffraction (XRD) method. The results show that the compressive residual strain in the LDC/NiO anode decreases with the increase of Ni substrate temperature during the plasma spraying. Heating the substrate during APS coating process leads to the less mismatch of thermal expansion after cooling down of specimen. Moreover, the bonding strength between the anode and substrate decreases with the increasing compressive residual strain in the coating. The specimen with the highest bonding strength (40.1 MPa) and lowest compressive residual strain (0.36%) was obtained by heating the Ni substrate at 600ºC during spraying process.
Finally, we investigated the residual strain of each component in SOFC, which under the cyclic redox treatments. The results show that each sample (LSCM buffer, NiO/LDC, LDC buffer, LSGM, LSCF) reveal compressive residual strain after plasma spraying. However, the strain states of these components become complicated and irregular after the redox treatments.


摘 要 i
ABSTRACT iii
致 謝 v
目 錄 vi
表 目 錄 viii
圖 目 錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 4
第二章 理論基礎與文獻回顧 5
2.1 固態氧化物燃料電池 5
2.1.1 燃料電池概述 5
2.1.2 固態氧化物燃料電池原理 6
2.1.3 金屬支撐固態氧化物燃料電池 7
2.2 電漿熔射噴塗 9
2.2.1 電漿熔射的基本原理 9
2.2.2 電漿熔射裝置 12
2.2.3 熔射塗層性質與微結構 15
2.2.4 電漿熔射技術製備SOFC之優點 17
2.3 殘留應力之量測 18
2.3.1 簡介 18
2.3.2 X光繞射量測殘留應力之原理與方法 19
第三章 實驗方法及步驟 25
3.1 噴塗起始粉末與塗層製備 25
3.2 材料結構與顯微組織觀察 28
3.3 塗層殘留應力之量測 29
3.4 塗層鍵結強度的量測 30
第四章 結果與討論 31
4.1 原始粉末 31
4.2 陽極陰極電解質塗層之殘留應變 33
4.3 NiO/LDC陽極塗層之熱應力分析 39
4.3.1 材料顯微組織及相組成分析 39
4.3.2 NiO/LDC陽極塗層之殘留應力 41
4.3.3 基材預熱及塗層厚度對殘留應力之影響 45
4.4 NiO/LDC陽極塗層中之機械性質探討 50
4.4.1 NiO/LDC陽極塗層中之殘留應變 50
4.4.2 NiO/LDC陽極塗層與基材之鍵結強度 53
4.4.3 NiO/LDC陽極塗層破壞模式分析 55
4.5 循環氧化與還原處理量測塗層元件內應變 58
4.5.1 SB, substrate+LSCM buffer試片之殘留應變 59
4.5.2 SBA, SB + anode試片之殘留應變 63
4.5.3 SBAB, SBA + LDC buffer試片之殘留應變 67
4.5.4 SBABE, SBABEC試片之殘留應變 70
第五章 結論 71
參考文獻 73


[1]Bill Keepin, Gregory Kats, “Greenhouse warming: Comparative analysis of nuclear and efficiency abatement strategies”, Energy Policy, 1988, 16, 538-561.
[2]Osamu Yamamoto, “Solid oxide fuel cells: fundamental aspects and prospects”, Electochimica Acta, 2000, 45, 2423-2435.
[3]Takehisa Fukuia, Satoshi Oharaa, Kenji Murataa, Hiroyuki Yoshidab, Kazuhiro Miurac, Toru Inagaki, “Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film”, Journal of Power Sources, 2002, 106, 142-145.
[4]Julia Will, Andreas Mitterdorfer, C. Kleinlogel, Dainius Perednis, Ludwig Gauckler, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells”, Solid State Ionics, 2000, 131, 79-96.
[5]Tom Mathews, Nadine Rabu, J.R Sellar, B.C Muddle, “Fabrication of La1−xSrxGa1-yMgyO3(x+y)/2 thin films by electrophoretic deposition and its conductivity measurement”, Solid State Ionics, 2000, 128, 111-115.
[6]Xin-qing Ma, Rob Hui, Heng Zhang, Jin-xiang Dai, Jeff Roth, Tongsan Danny Xiao, David Reisner, “Intermediate temperature solid oxide fuel cell based on fully integrated plasma-sprayed components”, Journal of Thermal Spray Technology, 2005, 14, 61-66.
[7]Yung-Chin Yang, EdwardYi Chang, “The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress”. Thin solid films, 2003, 444, 260-275.
[8]Yung-Chin Yang, Edward Chang, “Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate”, Biomaterials, 2001, 22, 1827-1836.
[9]毛宗強,燃料電池,北京:化學工業出版社,2005,第一頁。
[10]William Robert Grove, “On voltaic series and the combination of gases by platinum”, London and Edinburgh Philosophical and Journal of Series, 1839, 14, 127-130.
[11]Minh Nguyen Quang, “High-Temperature Fuel Cells. Part 2: The Solid Oxide Cells”, Chem. Tech, 1991, 120-26.
[12]黃鎮江,燃料電池之簡介,台北市:全華科技,2005,第1-9頁。
[13]Ying-Wei Kang , Jun Li, Guang-Yi Cao, Heng-Yong Tu, Jian Li, Jie Yang, “Dynamic temperature modeling of an SOFC using least squares support vector machines”, Journal of Power Sources, 2008, 179, 683-692.
[14]黃鎮江,燃料電池,台中市:滄海書局,2008,第242頁。
[15]I. Antepara, I. Villarreal, L.M. Rodr´ıguez-Mart´ınez, N. Lecanda, U. Castro, Ander Laresgoiti, “Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs”, Journal of Power Sources, 2005, 151, 103-107.
[16]Changbo Lee, Joongmyeon Bae, “Fabrication and characterization of metal-supported solid oxide fuel cells”, Journal of Power Sources, 2008, 176, 62-69.
[17]Detlev Stöver, Dag Hathiramani, Robert Vaßen, Rajiv Damani, “Plasma_sprayed components for SOFC applications”, Surface & Coatings Technology, 2006, 201, 2002-2005.
[18]Robert Vaßen, Dag Hathiramani, Josef Mertens, Vincent Haanappel, Izaak Vinke, “Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS)”, Surface & Coatings Technology, 2007, 202, 499-508.

[19]Qiuan Huang, Jorg Oberste-Berghaus, Dongfang Yang, Sing Yick, Zhen-wei Wang, Bing-wen Wang, Rob Hui, “Polarization analysis for metal-supported SOFCs from different fabrication processes”, Journal of Power Sources, 2008, 177, 339-347.
[20]Benjamin Church, Thomas Sanders, Robert Speyer, Joe Cochran, “ Interconnect thermal expansion matching to solid oxide fuel cells”, Journal of Materials Science, 2005, 40, 4893-4898.
[21]Zhen-wei Wang, Jorg Oberste Berghau, Sing Yick, Cyrille Déces-Petit, Wei Qu, Rob Hui, Radenka Maric, Dave Ghosh, “Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units”, Journal of Power Sources, 2008, 176, 90-95.
[22]Marco Brandner, Martin Bram, Jan Froitzheim, Hans Peter Buchkremer, Detlev Stöver, “Electrically Conductive Diffusion barrier layers for Metal-Supported SOFC”, Solid State Ionics, 2008, 179, 1501-1504.
[23]Shiqiang (Rob) Huia, Dongfang Yangb, Zhenwei Wanga, Sing Yicka, Cyrille Decès-Petita, Wei Qua, Adam Tucka, Radenka Marica, Dave Ghosh, “Metal-supported solid oxide fuel cell operated at 400-600°C”, Journal of Power Sources, 2007, 167, 336-339.
[24]Julia Will, Andreas Mitterdorfer, C. Kleinlogel, Dainius Perednis, Ludwig Gauckler, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells”, Solid State Ionics, 2000, 131, 79-96.
[25]Dongfang Yang, Xinge Zhang, Suwas Nikumba, Cyrille Dec`es-Petit, Rob Hui, Radenka Maric, Dave Ghosh, “Low temperature solid oxide fuel cells with pulsed laser eposited bi-layer electrolyte”, Power Sources, 2007, 164, 182-188.

[26]Yoshihiro Ohno, Yasuo Kaga, Susumu Nagata, “Study on the fabrication and the performance of the solid electrolyte fuel cell”, Electrical Engineering in Japan, 1987, 107, 59-67.
[27]Rui Zheng, Huai-wen Nie, Wen-xia Chen, Xiang-feng Zhang, Ting-lian Wen, “Development of intermediate temperature planar solid oxide fuel cells by plasma spray technique”, Journal of the Chinese Ceramic Society, 2003, 31, 598-603.
[28]Günter Schiller, Rudolf Henne, Michael Lang, Matthias Müller, “Development of solid oxide fuel cells (SOFC) for stationary and mobile applications by applying plasma deposition processes”, Materials Science Forum, 2003, 426-432, 2539-2544.
[29]Okumura K, Aihara Y, Ito S, Shinji Kawasaki , “Development of thermal spraying-sintering technology for solid oxide fuel cells”, Journal of Thermal Spray Technology, 2000, 9, 354-359.
[30]Lan Zhang, Hong-Quan He, Wen-Rui Kwek, Jan Ma, Ee Tang, San-Ping Jiang, “Fabrication and Characterization of Anode-Supported Tubular Solid-Oxide Fuel Cells by Slip Casting and Dip Coating Techniques”, The American Ceramic Society, 2009, 92, 302-310.
[31]蕭威典,劉武漢,電漿熔射技術簡介,工業材料雜誌,2005,第228期,第163頁。
[32]蕭威典、劉武漢,電漿熔射技術簡介,工業材料雜誌,2005,第228期,第159頁。
[33]Ormerod Mark, “Solid oxide fuel cells”, Journal of Chemistry Society Reviews, 2003, 32, 17-28.

[34]Trevor William Clyne, “Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work”, Journal of Thermal Spray Technology, 1996, 5, 401-418.
[35]Anthony Perry, Sue Albert, Philip Martin, “Practical measurement of the residual stress in coatings”, Surface and Coatings Technology, 1996, 81, 17-28.
[36]Seiji Kuroda, Takeshi Kukushima, Shigeru Kitahara, “Simultaneous measurement of coating thickness and deposition stress during thermal spraying”, Thin solid films, 1988, 164, 157-163.
[37]吳泰伯,許樹恩,X光繞射原理與材料結構分析,1996,第385-394頁。
[38]Chang-Sing Hwang, Chun-Huang Tsai, Chih-Hung Lo, Cha-Hong Sun, “Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode”, Journal of Power sources, 2008, 180, 132-142.
[39]Ahmet Birkan Selçuk, Alan Atkinson, “Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC) ”, Journal of the European Ceramic Society, 1997, 17, 1523-1532.
[40]Yi-Ching Yang, Edward Chang, Bing-Hwait Hwang, Show-Yueh Lee, “Biaxial residual stress states of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate”, Biomaterials, 2000, 21, 1327-1337.
[41]Janine Johnson, Jianmin Qu, “Effective modulus and coefficient of thermal expansion of Ni–YSZ porous cermets”, Journal of Power Sources, 2008, 181, 85-92.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top