跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁谷帆
研究生(外文):Gu-Fan Liang
論文名稱:數值模擬探討矩形流道裝置水平擺放單雙壓電風扇對平板型散熱器熱流特性影響
論文名稱(外文):Numerical Simulation Investigate of Thermal and Flow Characteristics of Plate-fin Heat Sink in Rectangular Channel Flow with installation of Horizontal Single and Twin Piezoelectric Fans
指導教授:蔡國隆蔡國隆引用關係
指導教授(外文):Go-Long Tsai
口試委員:吳浴沂李弘毅楊鏡堂
口試委員(外文):Yuh-Yih WuHung-Yi LiJing-Tang Yang
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:143
中文關鍵詞:電子冷卻計算流體力學壓電風扇平板型散熱器
外文關鍵詞:Electronic CoolingComputational Fluid DynamicsPiezoelectric FansHeat sink
相關次數:
  • 被引用被引用:2
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的為使用計算流體力學軟體Fluent,以數值模擬方式討論於流道內裝置壓電風扇對平板型散熱器熱流特性之影響。壓電風扇裝置於平板型散熱器前方流道內,將壓電風扇冷流體往散熱器導入,並在流道產生渦流來增強散熱器周遭冷熱流體的混合。數值模擬之各項參數包括、壓電風扇前端至散熱鰭片前端距離(Lg)、壓電風扇至矩形流道底部高度(Hw)以及散熱鰭片數(n),雙壓電風扇為同向位與相位差改變之影響。
研究結果顯示,將雙壓電風扇裝設在流道內能有效地增強平板型散熱器之努塞爾值。當單、雙壓電風扇高度(Hw)為15mm至散熱器前方位置(Lg)為5mm且雙壓電風扇間距(a)為20mm,裝設位置可增強努塞爾值之效果最佳。其鰭片數10片則會優於鰭片數14片散熱效能,因散熱器流道寬度變大影響到散熱效能提高。


The thermal and flow characteristic of plate-fan heat sink in rectangular channel flow with installation of piezoelectric fans which is investigated numerically by Fluent. Twin piezoelectric fans are installed on the flow passage of the channel. The effect of distance between end of (a), distance between tip of piezoelectric fans and front of heat sink (Lg), configuration of piezoelectric fans and rectangular channel flow of height (Hw) and fin number of heat sink (n),Twin piezoelectric fans can be in phase and out of phase.
The results show that the heat transfer can be enhanced of Nusselt number by install single and twin piezoelectric fans properly. The better performance is obtained as Hw=15mm, piezoelectric fans is installed in front of heat sink position as Lg=5mm and twin piezoelectric distance between a=20mm.The efficiency of inserting piezoelectric fans in case of 10 fins is better than of 14 fins. The efficacy of inserting piezoelectric fans increases when the width of heat sink flow channel increases.

摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 平板型散熱器 2
1.3.2 壓電風扇散熱效果特性研究 3
1.3.3 國內對壓電風扇熱流特性之研究 7
1.4 研究目的 10
第二章 壓電特性之作動原理 15
2.1 壓電材料 15
2.1.1 壓電材料種類 15
2.1.2 壓電效應 16
2.2 機械振動特性 17
2.2.1 振動理論 17
2.2.2 壓電風扇振動模態 19
第三章 理論模式 25
3.1 統御方程式 25
3.2 動態網格 26
3.2.1 動態網格守恆方程式 26
3.2.2 動態網格更新方法 27
3.3 邊界條件 31
3.3.1 入口邊界條件 31
3.3.2 壁面邊界 32
3.3.3 移動邊界 32
3.3.4 出口邊界 35
3.3.5 加熱面 35
3.3.6 散熱器表面 35
3.3.7 壓電風扇 35
3.4 離散化 36
3.5 薄膜溫度 36
第四章 幾何模型與數值方法 37
4.1 幾何模型 37
4.1.1 平板型散熱器 40
4.1.2 壓電風扇 41
4.2 數值方法 42
4.2.1 前處理 42
4.2.2 數值模擬 44
4.2.3 後處理 44
4.2.4 格點獨立驗證 48
4.2.5 數值穩定驗證 48
第五章 數值模擬結果與討論 50
5.1 雙壓電風扇前端至散熱器前端(Lg) 51
5.2 雙壓電風扇前端高度至散熱器前端(Hw) 76
5.3 雙壓電風扇前端至散熱器前端(Lg)不同相位 98
5.4 雙壓電風扇前端高度至散熱器前端(Hw)不同相位 108
5.5 單壓電風扇前端至散熱器前端(Lg) 115
5.6 單壓電風扇前端高度至散熱器前端(Hw) 125
5.7 鰭片數(n=14)整體表現 132
5.8 鰭片數(n=10)整體表現 134
第六章 結論與未來展望 136
6.1 結論 136
6.2 未來展望 138
參考文獻 139
符號彙編 142



[1]H. Y. Li, S. M. Chao, G. L. Tsai, “Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography,”International Journal of Heat and Mass Transfer, Vol. 48, pp. 5386-5394, 2005.
[2]S. A. El-Sayed, S. M. Mohamed, A. M. Abdel-latif and A. E. Abouda,“Experimental study of heat transfer and fluid flow in longitudinal rectangular-fin array located in different orientations in fluid flow,”Experimental Thermal and Fluid Science,Vol. 29,No. 8, pp. 113-128, 2004.
[3]H. Y. Li and S. M. Chao, “Measurement of performance of plate-fin heat sinks with cross flow cooling,”International Journal of Heat and Mass Transfer, Vol 52, No.12-14, pp.2949-2955, 2009.
[4]H. Y. Li, G. L. Tsai, M. H. Chiang and J. Y. Lin,“Effect of a shield on the hydraulic and thermal performance of a plate-fin heat sink,”International Communications in Heat and Mass Transfer, Vol. 36, pp. 233-240, 2009.
[5]T. Acikalin ,S. V. Garimella,“Analysis and Prediction of the Thermal Performance of Piezoelectrically Actuated Fans,”Heat Tranfer Engineering,Vol 30, No.6, pp.487-498, 2009.
[6]T. Acikalin ,S. V. Garimella, A. Raman, J. Petroski,“Characterization and optimization of the thermal performance of miniature piezoelectric fans,”Heat and Fluid Flow, Vol 28, No.4, pp.806-820, 2007.
[7]T. Acikalin ,S. V. Garimella, S. M. Wait, A. Raman “Exprimental Investigation of the Thermal Performance of Piezoelectric,”Heat Tranfer Engineering,Vol 25, No.1, pp.4-14, 2004.
[8]M. Kimber, S. V. Garimella,A. Raman “Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers,” International Journal of Heat Transfer, Vol. 129, No. 9, pp. 1168-1176, 2007.
[9]M. Kimber, S. V. Garimella, “Measurement and prediction of the cooling characteristic of a generalized vibrating piezoelectric fan,” International Journal of Heat and Mass Transfer, Vol. 52, No. 19-20, pp. 4470-4478, 2009.
[10]M. Kimber, S. V. Garimella, “Cooling Performance of Arrays of Vibrating Cantilevers,” International Journal of Heat Transfer, Vol 131,pp.1114011-1114018, 2009.
[11]M. Kimber, K. Suzuki, N. Kitsunai, K. Seki and S. V. Garimella, “Pressure and Flow Rate Performance of Piezoelectric Fans,” IEEE Transactions on omponents and Packaging Technologies, Vol. 32, No. 4, pp. 766-755, 2009.
[12]S. F. Liu, R. T. Huang, W. J. Sheu, C. C. Wang, “Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement,” International Journal of Heat and Mass Transfer, Vol. 52, No. 11-12, pp. 2565-2570, 2009.
[13]D. K. Zaitsev, N. A. Schur, E. M. Smirnov, “Numerical simulation of 3D turbulent flow around bodies subjected to vortex-induced and forced vibration,” Parallel Computational Fluid Dynamics, Bled, Vol.67, pp. 347-354, 2009.
[14]S. M. Wait, S. Basak, S. V. Garimella and A. Raman, “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications,” IEEE Transactions on Components and Packaging Technologies, Vol 30, No.1, pp.119-128, 2007
[15]K. H. Tseng, M. Mochizuki, K. Mashike, T. Nguyen, F. Kiyoka, and T. Kosakabe, “Piezo Fan for Thermal Management of Electronics,” Proceedings of the 2nd International Forum on Heat Tranfer, pp.1-4, 2008, Tokyo, Japan, September 17-19, 2008.
[16]M. K. Abdullah, M. Z. Abdullah, S. F. Wong, C. Y. Khor, Y. Ooi, K. A. Ahmad, Z. M. Ripin, and M. A. Mujeebu, “Effect of piezoelectric fan height on flow and heat transfer for electronics cooling applications,” The 10th Internation Conference Electronics Material and Packaging, pp. 165-170, Taipei Taiwan, October 22-24, 2008.
[17]K. M. Ng, I. Sauciuc, H. Wada, N. Tanaka, “Cooling Performace of Piezoelectric Fan in Notebook System,”34th International Electronic Manufacturing Technology Conference, 2010
[18]劉勝富,壓電風扇的散熱性能研究,國立清華大學,碩士論文,2008。
[19]許旭宏,以實驗設計法探討壓電風扇與矩形管內之散熱效能,國立成功大學,碩士論文,2009。
[20]陳泳豐,反算設計問題於壓電風扇之扇葉位置與形狀最佳化之研究,國立成功大學,碩士論文,2011。
[21]王本勇,壓電風扇之熱流特性分析,華梵大學,碩士論文,2011。
[22]趙上茗,散熱片應用於電子冷卻之熱流特性研究,華梵大學,博士論文,2011。
[23]王松筠,應用PIV與壓電風扇冷卻散熱片之流場量測,華梵大學,碩士論文,2011。
[24]Fluent 13 User''s Guide, 2012, Fluent Inc.
[25]S. S. Rao, Mechanical Vibrations, 5th edition, Prentice Hall (2010)
[26]Piezo Fan Blade-115 V/60 Hz Version Manual, Piezo Systems Inc, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊