跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建任
研究生(外文):Chien-Jen Lin
論文名稱:矩形流道內裝置壓電風扇對於熱傳效應之影響
論文名稱(外文):Numerical Study of Thermal and Flow Characteristics of Flat-plate Heat Sink in Rectangular Channel Flow with Piezoelectric Fan device
指導教授:蔡國隆蔡國隆引用關係
口試委員:吳浴沂李弘毅楊鏡堂
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:110
中文關鍵詞:電子冷卻計算流體力學壓電風扇平板型散熱器
外文關鍵詞:Electronic CoolingComputational Fluid DynamicsPiezoelectric fanHeat sink
相關次數:
  • 被引用被引用:2
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本文使用計算流體力學軟體Fluent,以數值模擬方式討論於矩形流道內裝置壓電風扇對平板型散熱器熱流特性之影響。壓電風扇利用壓電材料的逆壓電效應特性照成葉片的擺動,改變矩形流道內之流場結構,進而影響熱流特性。且其具有體積小,低功率消耗,低噪音等優點。數值模擬探討之參數包括紐賽爾數(Nu)、壓電風扇葉片尖端至散熱器前端距離(Lg)、壓電風扇中心至流道底板高度(Hw)、壓電風扇配置(Single-fan與Twin-fan)、相位差(In-phase與Counter-phase)、散熱器鰭片寬度(Wf) 與鰭片數(n)。研究結果顯示,當固定壓電風扇中心至流道底板距離 (Hw = 21) 時,其最佳散熱位置為壓電風扇前端至散熱器前端 (Lg = -22.5),而雙壓電風扇配置下的散熱效果均於單壓電風扇,其中雙壓電風扇以 (Counter-phase) 擺動方式對散熱器的散熱效果較佳。壓電風扇散熱性能隨著改變壓電風扇中心至流道底板高度 (Hw) 增加而降低;當壓電風扇擺放於散熱器前端時,應使壓電風扇中心至流道底板高度降低。

This study presents the thermal and flow characteristic of flat-plate heat sink in rectangular channel with piezoelectric fan by using numerical method with CFD software Fluent. A piezoelectric fan is an attractive device to remove heat from microelectronic due to it’s low power consumption, minimal noise and compactness. By vertical arrangement, It is found that heat the heat transfer augmentation of the piezoelectric fan comes from the entrained airflow during each oscillation cycle and the jet air stream at the fan tip. The parameters are discussed in detail, such as Nusselt number(Nu), distance between piezoelectric fan to heat sink(Lg), distance between center of piezoelectric fan to channel’s bottom(Hw), including the (Single-fan) and (Twin-fan) with (Counter phase) and(In phase), A volumetric coefficient of performance is also proposed. The heat transfer performance for vertical arrangement.

中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 平板型散熱器 2
1.3.2 平板型散熱器與其他形式散熱器之比較 3
1.3.3 壓電風扇 6
1.4 研究目的 10
第二章 理論模式 14
2.1 統御方程式 14
2.2 層流模型 15
2.3 動態網格守恆方程式 16
2.3.1 動態網格更新方法 17
2.4 邊界條件 18
2.4.1 入口邊界條件 19
2.4.2 壁面邊界 19
2.4.3 其他邊界條件 19
2.5 離散化 20
2.6 薄膜溫度 20
第三章 幾何模型與數值方法 21
3.1 幾何模型 21
3.1.1 平板型散熱器 24
3.1.2 壓電風扇 25
3.2 數值方法 28
3.2.1 前處理 28
3.2.2 數值模擬 29
3.2.3 後處理 30
3.2.4 格點獨立驗證 32
3.2.5 時間步階測試 34
第四章 數值模擬結果與討論 36
4.1 壓電風扇葉片前端至散熱器前端之距離 (LG) 37
4.2 壓電風扇中心至流道底板間距 (HW) 43
4.3 散熱器鰭片數 (N) 50
4.3.1 散熱器鰭片數 (n)對改變壓電風扇葉片前端至散熱器端之距離 (Lg)參數之分析 50
4.3.2 散熱器鰭片數 (n)對改變壓電風扇中心至流道底板之距離(Hw)的參數分析 55
4.4 壓電風扇配置之流場比較 (SINGLE-FAN與TWIN-FAN) 67
4.4.1 單壓電風扇與雙壓電風扇(Counter-phase)配置的熱傳分析 72
4.4.2 雙壓電風扇配置(Twin-fan) Counter-phase對於鰭片數改變之影響 77
4.4.3 雙壓電風扇配置(twin-fan) In-phase 87
4.4.4 壓電風扇配置(Twin-fan) In-phase與Counter-phase 93
第五章 結論與未來展望 98
5.1 結論 98
5.2 未來展望與建議 99
參考文獻 100
符號彙整 104
附錄 106



[1]S. Naik, S. D. Probert and I. G. Bryden, “Heat Transfer Characteristics of Shrouded Longitudinal Ribs in Turbulent Forced Convection,” International Journal of Heat and Fluid Flow, Vol. 20, No. 4, pp. 374-384, 1999.
[2]H. Shaukatullah, W. R. Storr, B. J. Hansen and M. A. Gaynes, “Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications,” Semiconductor Thermal Measurement and Management Symposium, pp. 151-163, 1996.
[3]M. Ishizuka, Y. Yokono and D. Biswas, “Experimental Study on the Performance of a Compact Heat Sink for LSI Packages,” Proceedings Institution of Mechanical Engineers, Part A, Vol. 214, No. 5, pp. 523-530, 2000.
[4]S. A. El-Sayed, S. M. Mohamed, A. M. Abdel-latif and A. E. Abouda, “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Arrays of Different Geometries and Shrouded Fin Array,” Experimental Thermal and Fluid Science, Vol. 26, No. 8, pp. 879-900, 2002.
[5]H. Y. Li and S. M. Chao, “MeasuRement of Performance of Plate-Fin Heat Sinks with Cross Flow Cooling,” International Journal of Heat and Mass Transfer, Vol 52, No.13-14, pp. 2949-2955, 2009.
[6]S. A. El-Sayed, S. M. Mohamed, A. M. Abdel-latif and A. E. Abouda, “Experimental Study of Heat Transfer and Fluid Flow in Longitudinal Rectangular-Fin Array Located in Different Orientations in Fluid Flow,” Experimental Thermal and Fluid Science, Vol. 29, No. 8, pp. 113-128, 2004.
[7]C. B. Coetzer, and J. A. Visser, “Compact Modeling of Forced Flow in Longitudinal Fin Heat Sinks With Tip Bypass,” Journal of Electronic Packaging, Vol. 125, No. 3, pp. 319-324, 2003.
[8]S. Prstic, M. Lyengar and A. Bar-Cohen, “Bypass Effect in High Performance Heat Sinks,” International Thermal Sciences Conference, Bled, Slovenia, June 11-14, 2000.
[9]H. Jonsson, and B. Palm, “Thermal and Hydraulic Behavior of Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, pp. 47-54, 2000.
[10]H. Jonsson, and B. Moshfegh, “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 142-149, 2001.
[11]H. Y. Li, S. M. Chao and G. L. Tsai, “Thermal Performance MeasuRement of Heat Sink with Confined Impinging Jet by Thermography,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 5386–5394, 2005.
[12]D. K. Kim, S. J. Kim, J. K. Bae, “Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 3510–3517, 2009.
[13]S. J. Kima, D. K. Kima, H. H. Oha,“Comparison of Fluid Flow and Thermal Characteristics of Plate-Fin and Pin-Fin Heat Sinks Subject to a Parallel Flow” Heat Transfer Engineering, Vol. 29, Issue 2, pp. 169 - 177 , 2008.
[14]N. Sahiti, A. Lemouedda, D. Stojkovic, F. Durst, E. Franz, “Performance comparison of pin fin in-duct flow arrays with various pin cross-sections,” Applied Thermal Engineering, Vol. 26, Issues 11-12, pp. 1176-1192, 2006.
[15]M.Choi, C.Cierpka, Y-H. Kim, “Vortex formation by a vibrating cantilever,”Journal of Fluids and Structures,Vol. 31, pp. 67-78 , 2012.
[16]Philipp Burmann, Arvind Raman, and Suresh V. Garimella“Dynamics and Topology Optimization of Piezoelectric Fans,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 4, pp. 592-600, 2003.
[17]Ju Hyun Yoo, Jae Il Hong, Wenwn Cao“Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices,” Sensors and Actuators, Vol. 79, pp. 8-12, 2000.
[18]M.K Abdullah, M.Z Abdullah, M.V. Ramana, C.Y. Khor, K.A. Ahmad, M.A. Mujeebu, Y. Ooi, Z. Mohd Ripin, “Numerical and experimental investigations on effect of fan height on the performance of piezoelectrix fan in microelectronic cooling,” International Communications in Heat and Mass Transfer, Vol. 36, pp. 51-58, 2009
[19]Sydney M. Wait, Sudipta Basak, Suresh V. Garimella, and Arvind Raman, “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 1, pp. 119-128, 2007.
[20]Mark Kimber, Suresh V. Garimella, and Arvind Raman,“An experimental Study of fluidic Coupling Between Multiple Piezoelectric Fans,”Cooling Technologies Research Center, pp. 333–340, 2006.
[21]Mark Kimber, Kazuhiko Suzuki, Nobutaka Kitsunai, Kenichi Seki, and Suresh V. Garimella, “Pressure and Flow Rate Performance of Piezoelectric Fans,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, No. 4, pp. 766-775, 2009.
[22]Tolga, Sydney M. Wait, and S V. Garimella,“Experimental Investigation of the Thermal Performance of Piezoelectric Fans, ” Heat Transfer Engineering, Vol. 25, Issue 1, pp. 4 - 14 , 2004.
[23]Tolga Acikalin, Arvind Raman, and Suresh V. Garimella, “Two-dimensional streaming flows induced by resonating thin beams, ” Acoustical Society of America, Vol. 114, No. 4, pp. 1785-1795, 2003.
[24]Sheng-Fu Liu a, Ren-Tsung Huang a, Wen-Jenn Sheu a, Chi-Chuan Wang “Heat transfer by piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement, ” International Journal of Heat and Mass Transfer, Vol. 52, pp. 2565-2570, 2009.
[25]R. R. Schmidt, “Local and Average transfer coefficients on a vertical surface due to convection from a piezoelectric fan, ” InterSociety Conference on Thermal Phenomena, pp. 41–49, Washington DC, May 4–7, 1994.
[26]KuoHao TSENG, Masataka MOCHIZUKI, Koichi MASHIKO, Thang NGUYEN, Fumitoshi KIYOKA, “Piezo Fan for Thermal Management of Electronics,” Fujikura Technical Review, pp. 39–43, Tokyo, September 17-19, 2008.
[27]Kar Mun Ngu, loan Sauciuc, Hiroaki Wada, Nobuhira Tanaka, “Cooling Performance of Piezoelectric Fan in Notebook System,” 34th International Electronic Manufacturing Technology Conference, pp. 1–6, Shanghai, 2010.
[28]Hsien-Chun Chunga, K. Lal Kummaria, S.J. Croucherb, N.J. Lawsonb, S. Guob, R.W. Whatmorec, Z. Huang, “Development of piezoelectric fans for flapping wing application,” Sensors and Actuators, Vol. 149, pp. 136-142, 2009.
[29]James Petroski, Mehmet Arik, and Mustafa Gursoy, “Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling,” IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 1, pp. 25-31, 2010.
[30] A. Ihara and H. Watanabe, “On the Flow Around Flexible Plates Oscillating with Large Amplitude, ” Journal of Fluids and Structures, Vol. 8, pp. 601-619, 1993.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊