跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佳新
研究生(外文):Chia-Hsin Chen
論文名稱:缸內直噴汽油引擎(GDI)之進排氣門積碳研究
論文名稱(外文):A study of Carbon Deposit around Intake and Exhaust Valves of GDI Engine
指導教授:吳浴沂
指導教授(外文):Yu-hsin Wu
口試委員:呂有豐蔡國隆
口試委員(外文):Yeou-Feng LueNational-Lung Tsai
口試日期:2012-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:130
中文關鍵詞:積碳缸內直噴汽油引擎進汽門排汽門失火
外文關鍵詞:Carbon DepositGasoline Direct Injection EngineIntake ValveExhaust Valvemisfire.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以實車作為實際的案例研究,研究的車型為LEXUS IS250缸內直噴汽油引擎,主要是探討進、排汽門的積碳所造成的引擎抖動、失火(misfire)及引擎故障指示燈亮起等問題;因涉及整個引擎控制系統的所有組件,當修護人員在實施故障診斷時,即使引擎管理系統有紀錄故障代碼,但偵測範圍並非針對某一個感知器或作動原件,尤其在車輛的故障出現時機為偶發性的故障將增加修護人員在維修上的困難度,經常造成測試數據上的誤差及判斷錯誤等問題,且因需要階段性排除可能原因,而必須反覆實施零件拆卸、測量及測試等,如此耗費大量檢診工時而且經常徒勞無功。
經過實際的案例分析當車輛出現單缸失火的現象時,將利用原廠專用的故障檢診儀器,紀錄故障當時有關於引擎控制系統的相關資料,並儲存後利用專用的電腦軟體進行分析,電腦分析的結果從空燃比感知器及燃油系統的長短期修正回饋資料顯示,得知該故障的缸體在整個燃燒系統中均是出現空然比過濃的現象,由於該現象的故障有許多可能原因,最後檢修結果再經由缸內視鏡檢查發現進汽門傘部有嚴重的積碳產生,因為當噴油量固定時由於進汽門的積碳會阻礙了進氣的流動而導致進氣量的不足,所以就會出現混合比過濃的異常現象,也成為了單缸失火的主因。由於各車廠之維修手冊雖有條列可能之故障部位及維修程序,但修護人員必須逐一的確認並測試,針對缸內直噴汽油引擎進、排汽門的積碳發生時,在未拆卸零件實施單體測試之前,以非侵入檢測的方式,先發掘故障點的趨勢,來減少零件拆卸測試程序並縮小檢診測試的範圍,且一旦發生積碳時,不需大費周章的分解引擎清洗機碳,本文將提供針對研究車型如何有效的將進汽門積碳清除。

This study makes use of real cases on practical vehicles for researching. Regarding the vehicles model, LEXUS IS250 with GDI engine was used for this study. And, it mainly researches the problems of carbon build-up around intake and exhaust valves on GDI Engine. As a results of carbon build-up, it could cause engine misfire, rough idling and check engine indicator lighting on. Since the problems relate to many components of Engine Control System, the diagnostic system doesn''t only focus on monitoring one sensor or one actuator during troubleshooting even with DTC Codes stored in the ECU. Especially, the temporary problem occurs. Then, the troubleshooting becomes more difficult. In this case, technicians often misjudge due to the incorrect data. For solving this problems, technicians have to follow up the repair manual step by step including removing, reinstalling, checking or measuring the suspicious parts repeatedly. It takes time and even no solutions were found finally.
In many real cases, technician uses diagnostic tools to read the related data and DTC codes of the faults, which stored in the engine ECU during misfire problem occurring in a single cylinder. We could analyze the stored data and DTC codes by using the diagnostic tools. The data will show the results of the condition of A/F mixture and injection system according to the feedback signals form A/F sensor with long & short FT. Finally, we are able to understand if the air-fuel mixture is too rich or too lean because of the faulty cylinder. Since there are too many possibilities of which defect could cause misfire, usually we figure out the root cause is due to carbon deposit around the In. & Ex. Valves by using cylinder endoscope. The deposits could restrict the intake air flow and caused the air-fuel ratio became too rich. That is why misfire occurs inside of the cylinder during combustion process.All though the repair manuals from makers may offer the repair procedure and indicate the suspicious faulty parts, the technicians still need to confirm the parts one by one. Then, try to diagnose the root cause of carbon deposits without removing and reinstalling the parts. Without using the intruding method, figure out the trend of faulty area and then narrow down the suspicious area of problems in order to reduce the R/R works. Therefore, technicians no need taking a long time to dissemble and assemble the engine for cleaning the carbon. In conclusion, this study would like to offer a good solution for shortening the repair time and removing the carbon deposit efficiently for the researching model.

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 2
1.2 文獻回顧 3
1.3 研究方法 12
第二章 缸內直噴汽油引擎基本原理及發展狀況 14
2.1 缸內直噴汽油引擎的優缺點 14
2.1.1 GDI引擎的優點 15
2.1.2 GDI引擎的缺點 16
2.2 缸內直噴汽油引擎基本原理 17
2.2.1 燃料系統與燃油噴嘴 19
2.2.2 層狀進氣燃燒與均勻進氣燃燒 27
2.2.3 燃燒室中流場結構 28
2.2.4 燃油效率與污染排放 33
2.3 缸內直噴汽油引擎發展狀況 34
第三章 實驗方法與設備 38
3.1 缸內直噴汽油引擎的積碳現象 38
3.2 實驗車型規格及引擎相關系統介紹 45
3.2.1 引擎控制系統介紹 48
3.2.2 引擎控制系統資訊 54
3.2.3 引擎空燃比控制主要原件之原理與功能元件介紹 56
3.2.4 進氣系統介紹 59
3.2.5 高壓燃油系統 69
3.2.6 高壓噴油嘴構造原理 73
3.2.7 燃燒狀態 75
3.3 實驗方法 78
3.4 實驗設備介紹 78
3.4.1 車上檢診測試器 78
3.4.2 電腦分析軟體 82
3.4.3 廢氣分析儀 83
3.4.4 汽缸壓縮壓力表 84
3.4.5 汽缸內視鏡 85
3.4.6 數位相機 86
第四章 實驗結果與討論 88
4.1 實車案例結果分析 88
4.1.1 實車(A)案例調查 88
4.1.2 實車(B)案例調查 93
4.1.3 實車(C)案例調查 97
4.1.4 實車(D)案例調查 101
4.1.5 實車(E)案例調查 106
4.1.6 結果分析 110
4.2 進氣門積碳形成原因探討 112
4.3 積碳的清除方法 115
第五章 結論與未來展望 123
5.1 結論 123
5.2 建議與未來展望 125
參考文獻 126



[1] Borman G.L. and Ragland K.W, “Combustion Engineering”, P.43, McGraw-Hill, 1998.
[2] Zhao, F., Lai, M.-C., Harrington, D.L., 1999, “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science 25 (1999) 437–562.
[3] TOYOTA MOTOR CORPORATION., 2001, “Repair Manual Diagnostic,” pp.03-6, 05-21, 05-33, 05-44, 05-53, 05-55, 05-176.
[4] TOYOTA MOTOR CORPORATION.,2003, “Diagnosis Technician Training Manual,” pp.4-8.
[5] Fry, M., King, J., and White, C., 1999, “A Comparison of Gasoline Direct Injection Systems and Discussion of Development Techniques,” SAE Paper No. 1999-01-0171.
[6] SCole, R.L., Poola, R.B., and Sekar, R., 1999, “Emissions and Fuel Economy of a Vehicle with a Spark-Ignition, Direct-Injection Engine: Mitsubishi Legnum GDI,” Department of Energy, Office of Energy Efficiency and Renewable Energy, Contract W-31-109-ENG-38.
[7] Wirth, M., Piock, W.F., Fraidl, G.K., Schoeggl, P., and Winklhofer, E., 1998, “Gasoline DI engines: the complete system approach by interaction of advanced development tools,” SAE Paper No. 980492.
[8] Arters, D.C., Bardasz, E.A., Schiferl, E.A. and Fisher, D.W., 1999, “A Comparison of Gasoline Direct Injection Part I – Fuel System Deposits and Vehicle Performance,” SAE Paper No. 1999-01-1498.
[9] Paul W. Guthrie, 2001, “A Review of Fuel, Intake and Combustion System Deposit Issues Relevant to 4-Stroke Gasoline Direct Fuel Injection Engines,” SAE Paper No. 2001- 01-1202.
[10] Baumgarten, C., 2006, Mixture Formation in Internal Combustion Engines, Springer.
[11] 吳志勇,車輛研測資訊,2008,第20-29頁。
[12] Edwin A.et al., 2010, “Development of Injector for the Direct InjectionHomogeneous Market using Design for Six Sigma,” SAE Paper, No.2010-01-0594.
[13] Zhao, F., Lai, M.-C., Harrington, D.L., 1999, “Automotive spark-ignited direct-injection gasoline engines,” Progress in Energy and Combustion Science 25 (1999) 437–562.
[14] Stone, R., “Introduction to Internal Combustion Engines”, PP.162-164, MACMILLAN PRESS LTD, 1999.
[15] Kano, M., Saito, K., Basaki, M., Matsushita, S. and Gohno, T., 1998, “Analysis of Mixture Formation of Direct Injection Gasoline Engine,” SAE Paper No. 980157.
[16] Alkidas, A.C., and El Tahry, S.H., 2003, “Contributors to the fuel economy advantage of DISI engines over PFI engines,” SAE Paper No. 2003-01-3101.
[17] Yang, J. and Anderson, R.W., 1998, “Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine,” SAE Paper No.980495.
[18] Spicher, U., Reissing, J., Kech, J.M. and Gindele, J., 1999, “Gasoline Direct Injection (GDI) Engines-Development Potentialities,” SAE Paper No.1999-01-2938.
[19] Zhao, F., Lai, M.-C., Harrington, D.L., 1997, “A review of mixture preparation and combustion control strategies for spark-ignited direct-injection gasoline engines,” SAE Paper No.970627.
[20] Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., 1997, “Development of direct-injection gasoline engine,” SAE Paper No. 970540.
[21] Gäfvert, M., Arzen, K., Malcolm Pedersen, L., Bernhardsson, B., 2004, “Control of GDI engines using torque feedback exemplified by simulations,” Control Engineering Practice 12 (2004) 165–180.
[22] Preussner C, Doring C, Fehler S, Kampmann S., 1998, “GDI: interaction between mixture preparation, combustion system and injector performance,” SAE Technical Paper, No.980498.
[23] Bardasz, E.A., Arters, D.C., Schiferl, E.A., and Righi, D.W., 1999, “A comparison of gasoline direct-injection and port-fuel- injection vehicles: Part II lubricant oil performance and engine wear,” SAE Paper No.1999-01-1499.
[24] 林明俊,電腦噴射引擎,松祿文化事業股份有限公司,民國98年。
[25] http://www.mitsubishi-motors.co.jp/inter/technology/GDI/technology.html.
[26] Dodge, L.G., 1996,“Fuel preparation requirements for direct-injected spark ignition engine,” SAE Paper No.962013.
[27] Abraham J., 1998,“Entrainment characteristics of sprays for diesel and DISI applications, ”SAE Technical Paper, No.981934.
[28] 黃靖雄、賴瑞海,現代汽車新科技裝置,全華科技圖書股份有限公司,民國92年。
[29] Huston,R.A.,Cathcart G.P. , 1998,“combustion and emissions characteristics of Orbital''s combustion process applied to a multicylinder automotive direct injected 4-Stroke engines,” SAE Paper No.980153.
[30] Preussner C, Doring C, Fehler S, Kampmann S., 1998 ,“GDI: interaction between mixture preparation, combustion system and injector performance,” SAE Paper No.980498.
[31] Wirth M, Piock WF, Fraidl GK. , Actual trends and future strategies for gasoline direct injection. IMechE Seminar of Lean Burn Combustion Engines, S433,1996.
[32] Kinoshita M et al., 1997,“Study of nozzle deposit formation mechanism for direct injection gasoline engines,” JSAE Paper No.976.pp.21–4.
[33] http://www.toyota.co.jp/e/green/.
[34] Fraidl GK, Piock WF, Wirth M.,1996,“ Gasoline direct injection:actual trends and future strategies for injection and combustionsystems”. SAE Technical Paper No. 960465.
[35] Iwamoto Y, Noma K, Yamauchi T, Ando H.,1997 ,“ Development of gasoline direct injection engine,” SAE Technical Paper No. 970541.
[36] Nohira, H. et al. , 1997, Development of Toyota’s direct injection gasoline engine. Proceedings of AVL Engine and Environment Conference, pp.239–49.
[37] Giovanetti, A.J., Ekchian, J.A., Heywood.J.B., 1983,“Analysis of hydrocarbon emission mechanisms in a direct injection spark ignition engine,” SAE Paper No. 830587.
[38] Harada,J.,Tomita,T.,Mizuno,H.,Mashiki,Ito Y., 1987,“Development of a direct injection gasoline engine,” SAE Paper No. 974054.
[39] Iiyama, A. et al., 1998,“Realization of high power and low fuel consumption wuth low exhaust emissions in a direct- injection gasoline engine,”Proceedings of GPC''98, Advanced Engine Design & Performance.pp.76-88.
[40] 張珉豪,OBD-II診斷數值分析表,笛威出版有限公司,高雄市,民國90年。
[41] TOYOTA MOTOR CORPORATION., 2007, “ LEXUS IS250 REPAIR MANUAL,” pp.DI-55.
[42] TOYOTA MOTOR CORPORATION., 2007, “ LEXUS IS250 New Car Future,” pp.EG-74, pp.EG-76, pp.EG-115, pp.EG-117, pp.EG-118, pp.EG-119, pp.EG-120, pp.EG-132.
[43] TOYOTA MOTOR CORPORATION., 2004, “Diagnosis Technician Training Manual Engine,” pp.3-2, pp.3-4, pp.3-14, pp.3-15.
[44] TOYOTA MOTOR CORPORATION., 2000, “COROLLA REPAIR MANUAL,” pp.DI-55.
[45] TOYOTA MOTOR CORPORATION., 2009, “ Repair Manual Engine VOL.2,” pp.ES-106.
[46] TOYOTA MOTOR CORPORATION., 2001, “ Repair Manual Diagnostic,” p.03-6, 05-21, 05-33, 05-44, 05-53, 05-55, 05-176.
[47] 繆鎮成,朱軍, 喻盛地 審閱, 汽車電腦控制引擎波型分析與檢測技術,松祿文化事業股份有限公司,台北市,民國94年。
[48] TOYOTA MOTOR CORPORATION., 2004, “高級技術員Step 3汽油引擎訓練手冊PPT,” pp.29.
[49] TOYOTA MOTOR CORPORATION.,2004,“高級技術員Step 3 Other Control Systems訓練手冊 PPT,” pp.46-49.
[50] TOYOTA MOTOR CORPORATION., 2006, “IS250新車型教育Engine PPT,” pp.41-81.
[51] HOTAI MOTOR CORPORATION., 2010, “最新檢診新教育 PPT,” pp.47-pp.53.
[52] HOTAI MOTOR CORPORATION.,2002,“中文 IT-II簡介 PPT,” pp.12- pp.15.
[53] http://www.nokaut.pl/aparaty-cyfrowe/aparat-sony-dsc-wx1.html.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top