跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊定穎
研究生(外文):Ting-Ying Chuang
論文名稱:無網格法保險桿最佳化
論文名稱(外文):Bumper Design Optimization using Meshfree Method
指導教授:黃秀英黃秀英引用關係
口試委員:邱佑宗陳嘉勳
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:無網格法保險桿碰撞模擬最佳化保險桿最佳化
外文關鍵詞:MeshfreeBumperImpact AnalysisOptimizationBumper Optimization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
保險桿位於車輛前後端,於車輛撞擊時,可以緩和衝擊力,保護及減輕車內乘客或陸上行人的傷害。本論文針對保險桿以無網格法做模擬分析及最佳化設計。
研究中,以Hyperworks和LS-Dyna為建模及分析軟體,對保險桿幾何建立模型後,利用傳統有限元素法及無網格法先後對保險桿進行準靜態模擬,並將分析結果與實驗比較,瞭解有限元素法與無網格法之間的差異,最後利用LS-OPT軟體對保險桿做最佳化。
本研究結果顯示無網格法,求解所需時間約為有限元素法的3~5倍,無網格法的分析結果較有限元素法更接近實驗值。在高速碰撞下,物件承受大變形,有限元素法因大變形,容易造成網格扭曲,導致準確度降低,無法收斂而至運算終止;而無網格法並無實質的元素或網格,沒有一般有限元素法因元素網格大變形扭曲而運算發散的情形,適合大變形之實務應用。研究中,對保險桿前端吸能材的厚度及短樑稈件厚度做最佳化,保險桿重量減輕5公斤,衝擊指數降低30%以上,撞擊剛性牆反力減少41%,撞擊後入侵乘坐空間的量也減少4%。

Bumpers are located at the front and rear of a vehicle. They are one of the major components absorbing impact energy to prevent passengers or pedestrians from harming. This paper utilized element-free method to analyze and improve the design.
In the study, HyperMesh was used for preprocess, and LS-Dyna was used for meshfree analysis. The analysis results of traditional finite element method and meshfree method were compared with the quasi-static crush tests. Optimization was perform to improve the functional performance.
The results show that the meshfree method required 3-5 times more of calculation time than tradition finite element method, but had better correlation with hardware testing than the finite element method. While under high speed impact and large deformation, traditional finite element method could experience element distortion and lead to computation divergence and terminate the analysis. The meshfree method does not have elements or meshes, and is suitable for large deformation analysis. A bumper design optimization was performed with 5 Kg weight reduction, impact index reduced 30%, rigid wall reaction force was redesigned by 41% and passenger residual space was improved 4%.


目 錄

中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 6
1.4 論文架構 7
第二章 無網格法理論 8
2.1 有限元素法之基本理論 8
2.1.1 直接勁度法(The direct stiffness method) 8
2.2 無網格法之基礎理論 10
2.2.1 最小移動二乘法(MLS) 11
2.2.2 葛勒金弱式 13
第三章 電腦輔助模擬建模 15
3.1 模擬架構 15
3.2 幾何建模 16
3.3 網格設定 20
第四章 材料試驗 21
4.1 實驗目的 22
4.2 實驗機台 23
4.3 抗壓實驗 25
4.4 三層材料抗壓試驗 30
4.4.1 材料與實驗 31
第五章 分析與實驗驗證 33
5.1 .LS-Dyna材料卡片介紹 33
5.2 橡膠模擬分析 37
5.3 蜂窩鋁模擬分析 40
5.4 .EPP泡沫模擬分析 44
5.5 三層材料模擬分析 47
5.5.1 三層材料-EFG法放大網格 50
第六章 碰撞模擬與分析 54
6.1 模型簡述 54
6.2 材料設定 55
6.3 前碰撞模擬分析 61
6.3.1 .Baseline保險桿設計 61
6.3.2 修改後保險桿設計 64
6.4 小結 70
第七章 碰撞最佳化 71
7.1 最佳化函數 71
7.1.1 設計變數 71
7.1.2 限制條件 73
7.1.3 目標函數 76
7.1.4 三大設計函數 76
7.2 連續響應面法 77
7.3 最佳化結果 79
7.4 最佳化結果驗證 83
第八章 結論與未來展望 85
8.1 結論 85
8.2 未來展望 87
參考文獻 88
符號彙編 91







參考文獻

[1] Chinese National Standards, “Bumper Heights for Automobiles”, CNS D1061, (1983).
[2] Japanese Automobile Standards Organization, “Bumper Heights for Automobiles”, JASO B102,(1987).
[3] 美國 Federal Motor Vehicle Safety Standards, FMVSS 208 法規。
[4] S. S. Kim, K. W. Lee, D. H. Lee and H. G. Lee, ”Bumper System Development to Meet New IIHS Bumper Test Using CAE and Optimization,”SAE, 2009, Paper No. 2009-01-0962.
[5] M. M. R. Krishna, “Finite Element Topography and Shape Optimization of a Jounce Bumper Bracket” SAE, 2002, Paper No. 2002-01-1468.
[6] V. Mallela, A. K. Sharma, “Impact Response Prediction of Expanded Polypropylene Foam Energy Absorbers” SAE, 2003, Paper No. 2003-01-1296
[7] Euro New Car Assessment Programme, Euro NCAP.
[8] 趙正、陳超卓、吳沈榮,車體前端造型及材料對於行人腿部傷害指標的影響,汽車安全與節能學報,2010年,第1卷,第4期。
[9] A. Garg, G. K. Surisetty, S. Shuler, M. Mahfet, E. Jaarda, F. Mooijman, “Quick Prototype Methodology for Low Offset Thermoplastic Pedestrian Energy Absorbers” SAE, 2006, Paper No. 2006-01-1659.
[10] D. Nagwanshi, M. Marks, S. Bobba, “Part 581, IIHS Damageability and Lower Leg Impact Compliant Bumper - Challenges and Solutions” SAE, 2012, Paper No.2012-01-0274.
[11] R. S. Iyer, T. Montroy, S. Morgans and K. Gustafson, “Application of Advanced High Strength Stainless Steel for Mass Reduction in Automotive Structures - A Front Bumper Beam Case Study” SAE , 2011, Paper No. 2011-01-1054.
[12] D. I. Hociota and P. K. Mallick,” A Parametric Design and Formability Study of Boron Steel Bumper Beams,” SAE, 2010, Paper No. 2010-01-0433.
[13] B. Gilliard, “Abusive Testing of Thermoplastic vs. Steel Bumpers Systems” SAE, 1998 ,Paper No. 980106.
[14] S. Glasgow, D. Heatherington, D. Evans, “Bumper System Mass Reduction Through Hybrid Material and Process Strategy”SAE, 2006, Paper No. 2006-01-1661.
[15] L. B. Lucy(1977), ”A numerical approach to the testing of the fission hypothesis,”
The Astron.J,8(12),pp. 1013-1024.
[16] W. K. Liu, S. Jun,Y. F. Zhang, ”Reproducing Kernel Particle Methods,”
Int. J. Num. Meth. Fluids,Vol. 20,pp. 1081-1106.
[17] By P. Lancaster,K. Salkauskas(1981),”Surfaces Generated by Moving Least Squares Methods”Mathematics of computation,Vol. 37,number 155.
[18] B. Nayroles, G. Touzot, P. Villon (1992) “Generalizing the finite element method: diffuse approximation and diffuse elements,” Comput. Mech, Vol. 10 pp. 307-318.
[19] T. Belytschko, Y. Y. Lu (1994) “Element free Galerkin method,” Int. J. Num. Meth, Vol. 37, pp. 229-256.
[20] S. N. Atluri, T. Zhu (1998) “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech, Vol. 22, pp. 117-127.
[21] T. Zhu, J. Zhang, S. N. Atluri (1998) “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech, Vol. 21, pp. 223-235.
[22] 林義乾,凝膠材料衝擊平板與飛具結構之研究,碩士論文,成功大學航空太空工程學系,台南,2006。
[23] 顧元通、丁樺,無網格法及其最新進展,力學進展,第35卷,第3期。
[24] u-car汽車新聞網,http://news.u-car.com.tw/6491.html
[25] 張雄、劉岩,無網格法,北京:清華大學出版社,2004。
[26] 謝宜典,無元素葛勒金法,碩士論文,國立中央大學機械工程研究所,2006。
[27] G. R. Liu, Y. T. Gu (2000)”Coupling of Element Free Galerkin and Hybrid Boundary Element methods using modified variational formulation” Comput. Mech., 26(2):pp. 166-173.
[28] K. Omura, K. Honda, T. Suzuki, “Bumper Beam Attchment Structure For Vehicle”, United States Patent, No. US 6988753 B1, (2006).
[29] 弘達儀器,http://www.hungta.com/machinec/9501.html
[30] 三立化學股份有限公司,http://www.san-lih.com.tw/about-us.html
[31] 樹懋企業有限公司,http://www.shuhmao.com/
[32] 台寶樹脂化工股份有限公司,http://www.tjsp.com.tw/
[33] LS-Dyna Keyword user’s manual, version 971, May 2007, Livermore Software Technology Corporation, Livermore.
[34] National Crash Analysis Center, http://www.ncac.gwu.edu/
[35] W. J. Roux, N. Stander, R. T. Haftka, Response surface approximations for structural optimization, International Journal for Numerical Methods in Engineering 1998, 42:517-534.
[36] H. Mullerschon, M. Thiele, W. Muhlhuber, U. Gerlinger, “Applications of shape optimization with LS-OPT and ANSA,” 2nd ANSA&uETA International Congress.
[37] LS-OPT user’s Manual, version 4.2, February 2012, Livermore Software Technology Corporation,Livermore.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top