跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭佳斌
研究生(外文):Jia-Bin Guo
論文名稱:以田口實驗設計製備Cu-BTA奈米複合顆粒為潤滑添加劑之磨潤特性研究
論文名稱(外文):Study on tribological properties of preparation of Cu-BTA composite nanoparticles as lubricant additives by Taguchi experimental design
指導教授:高木榮高木榮引用關係
指導教授(外文):Mu-Jung Kao
口試委員:鄧敦平張合
口試委員(外文):Tun-Ping TengHo Chang
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:Cu-BTA奈米複合顆粒磨潤特性摩擦係數磨疤直徑
外文關鍵詞:Cu-BTAComposite nanoparticlesTribological propertiesfriction coefficientwear scar diameter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的為以田口實驗設計製備Cu-BTA奈米複合顆粒,為潤滑添加劑之磨潤特性研究。在本研究中,BTA水溶液與CuCl2水溶液反應生成實驗反應物,藉由反應物熱分解過程合成Cu-BTA奈米複合顆粒。BTA作為Cu奈米顆粒合成過程之穩定劑,及抑制Cu奈米顆粒在不同濃度中氧化,所以此過程,並不需要額外惰性氣體保護Cu奈米顆粒氧化。此外,以田口法標準直交表分配實驗參數,以觀察溶液溫度、溶液pH值和BTA劑量,對合成Cu-BTA奈米複合顆粒平均粒徑上之影響。以UV-Vis光譜儀、FT-IR、XRD、TG-DTA和TEM分析Cu-BTA奈米複合顆粒物質特性。然後,使用UV-Via光譜儀對Cu-BTA奈米複合顆粒作為添加劑之懸浮性進行評估,使用與ASTM G99標準相符之pin-on-disk儀器在相同測試條件下,研究Cu-BTA奈米複合顆粒作為添加劑之磨潤特性。磨潤試驗完成後對上下試片磨耗表面進行觀測,包含表面元素和磨耗表面形貌,以及對摩擦係數、磨疤直徑和表面粗糙度差異進行分析。歸納Cu-BTA奈米複合顆粒在磨潤實驗過程中之運作機制。結果顯示在最佳劑量比例與合成條件下,合成之Cu-BTA奈米複合顆粒平均粒徑約為7.91nm圓形球狀顆粒。Cu-BTA奈米複合顆粒分散於石蠟基礎油中可以大大提升潤滑油之磨潤性能,摩擦係數與磨疤直徑在跟石蠟基礎油相比分別減少40.7%和40.0%。磨潤機制是沉積膜於接觸區域形成,避免摩擦表面直接接觸以及減少接觸表面間之摩擦力,以及Cu-BTA奈米複合顆粒之球型形狀可以在摩擦表面起滾珠作用。

This aim of this paper was to study tribological properties of the synthesis of Cu-BTA composite nanoparticles as lubricant additives by Taguchi experimental design. In this study, the Cu-BTA composite nanoparticles were synthesized bya thermal decomposition process using experimental reactant, which were made by reacting CuCl2 aqueous solution with BTA aqueous solution. BTA functions as a stabilizer of the Cu nanoparticles and inhibition of oxidation of Cu nanoparticles in various concentrations so that this process does not need extra inert gases to protect the oxidation of Cu nanoparticles. Additionally, effects of solution temperature, pH value of solution, and dosage of BTA on the mean diameter of synthesized Cu-BTA composite nanoparticles was observed by orthogonal array for arranging parameters of experiment through Taguchi method. The material properties of Cu-BTA composite nanoparticle was anlysised by UV-Vis absorption spectrum, FT-IR, XRD, TG-DTA and TEM. Afterwards, the suspension ability of Cu-BTA composite nanoparticle as lubricant additives was evaluated by UV-Vis absorption spectrum. Tribological properties of Cu-BTA composite nanoparticles as lubricant additives were investigated by pin-on-disk apparatus according to ASTM G99 standard under the same testing conditions. After tribological experiments were finished, the worn surface of up-and-down specimens was observed through surface elements and appearance of worn surface. The differences of friction coefficient, wear scar diameter, and surface roughness was anlyzed. The result of tribological experiments was explicable in terms of wear scar diameter, friction coefficient, and the morphology of worn surface. The possible mechanisms of Cu-BTA composite nanoparticles in process of triobological experiments were generalized. Results show that the mean diameter of synthesized Cu-BTA composite nanoparticles is about 7.91nm spherical shape particle in the best percentage of dosage and synthesis condition. The tribological performance of lubricating oils can be improved significantly by dispersing Cu-BTA composite nanoparticles in liquid paraffin oil. The friction coefficient and the wear scar diameter have been reduced by 40.7% and 40.0% respectively compared with liquid paraffin oil. In conclusion, the significant finding show that the tribological mechanism is that a deposit film in the contacting regions was formed, which prevented the direct contact of rubbed surfaces and greatly reduced the friction force between contacting surface. Besides, the spherical shape of Cu-BTA composite nanoparticles functioned as rolling ball between the rubbed surfaces.

摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 本文結構 2
第二章 文獻回顧與基本原理 4
2.1 奈米Cu顆粒之製備法 4
2.1.1 微乳液法 4
2.1.2 多元醇還原法 5
2.1.3 輻射化學合成法 6
2.1.4 鹽類化學還原法 7
2.1.5 金屬氣相合成法 7
2.1.6 雷射消熔法 9
2.1.7 熱分解法 10
2.1.8 真空氣相沉積法 11
2.1.9 熱還原法與聲化學法 11
2.2 Cu奈米顆粒表面包覆研究 13
2.3 磨潤學 14
2.3.1 摩擦理論 14
2.3.2 磨耗理論 18
2.3.3 潤滑理論 20
2.4 奈米潤滑添加劑之研究 22
2.5 田口工程品質 28
2.5.1 直交表實驗 28
2.5.2 實驗變異分析 29
2.5.3 預測值 31
2.5.4 信號雜訊比 31
第三章 實驗設計與裝置 33
3.1 製備Cu-BTA奈米複合顆粒實驗 34
3.1.1 製備Cu-BTA奈米複合顆粒原理 34
3.1.2 製備Cu-BTA奈米複合顆粒設備 35
3.1.3 製備Cu-BTA奈米複合顆粒流程 36
3.2 磨耗試驗機系統架構 39
3.2.1 實驗機台電控設備 39
3.2.2 程式架構 45
3.3 磨耗試驗平台與磨耗實驗流程 47
3.3.1 磨耗試驗平台規格 47
3.3.2 測試油品與試片規格 48
3.3.3 實驗參數設定與定義 50
3.3.4 磨耗實驗流程 51
3.4 實驗分析儀器簡介 52
3.4.1 雷射光散射儀(Zetasizer Nano System) 52
3.4.2 傅立葉轉換式紅外光譜儀 53
3.4.3 熱重-卡量計雙重分析儀 54
3.4.4 X光繞射儀 55
3.4.5 高解析掃描穿透式電子顯微鏡 55
3.4.6 場發射掃描式電子顯微鏡 56
3.4.7 表面粗糙度儀 57
3.4.8 紫外-可見分光光譜儀 57
3.4.9 旋轉式流變儀 58
第四章 結果與討論 59
4.1 Cu-BTA奈米複合顆粒田口法實驗結果 59
4.1.1 Cu-BTA奈米複合顆粒直交表實驗結果 59
4.1.2 Cu-BTA奈米複合顆粒變異分析結果 60
4.1.3 Cu-BTA奈米複合顆粒望小特性參數組合 62
4.2 Cu-BTA奈米複合顆粒材料分析 63
4.2.1 雷射光散射儀分析 63
4.2.2 傅立葉轉換式紅外光譜儀分析 64
4.2.3 熱分解特性分析 65
4.2.4 X光繞射儀分析 66
4.2.5 UV-Vis光譜分析 67
4.2.6 TEM表面形貌觀察結果 68
4.3 Cu-BTA奈米複合顆粒磨耗試驗 69
4.3.1 磨耗實驗前置檢驗 69
4.3.2 Cu-BTA奈米複合顆粒於基礎油中懸浮度測試 70
4.3.3 Cu-BTA奈米複合顆粒於基礎油中黏度測試 72
4.3.4 初始磨潤實驗結果分析 74
4.3.5 磨耗表面EDS檢測結果分析 83
4.3.6 磨耗表面粗糙度檢測結果分析 85
4.3.7 最佳添加劑量極限測試 87
第五章 結論與未來展望 92
5.1 結論 92
5.2 未來展望 94
參考文獻 96
附錄 A:LabVIEW程式 104


[1]Frank Philip Bowden and David Tabor, The friction and lubrication of solids, New York: Oxford University Press, 2001.
[2]M. Boutonnet, J. Kizling, P. Stenius, and G. Maire, “The preparation of monodisperse colloidal metal particles from microemulsions,” Colloids and Surfaces, vol. 5, no. 3, 1982, pp. 209–225.
[3]I. Lisiecki and M. P. Pileni, “Copper metallic particles synthesized‘ in situ’ in reverse micelles: influence of various parameters on the size of the particles,” The Journal of Physical Chemistry, vol. 99, no. 14, 1995, pp. 5077–5082.
[4]I. Lisiecki, F.Billoudet, and M.P.Pileni, “Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles,” Journal of Molecular Liquids, vol. 72, no. 1-3, 1997, pp. 251–261.
[5]I. Lisiecki and M. P. Pileni, “Synthesis of copper metallic clusters using reverse micelles as microreactors,” Journal of the American Chemical Society, vol. 115, no. 10, 1993, pp. 3887–3896.
[6]M. P. Pileni, “Nanosized particles made in colloidal assemblies,” Langmuir, vol. 13, no. 13, 1997, pp. 3266–3276.
[7]Limin Qi, Jiming Ma, and Julin Shen, “Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions,” Journal of Colloid and Interface Science, vol. 2, no. 186, 1997, pp. 498–500.
[8]F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, vol. 32–33, part1, 1989, pp. 198–205.
[9]F. Fievet, F. Fievet-Vincent, J.-P. Lagier, B. Dumont, and M. Figlarz, “Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process,” J. Mater. Chem., vol. 3, no. 6, 1993, pp. 627–632.
[10]B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, and J. S. Kim, “Synthesis and size control of monodisperse copper nanoparticles by polyol method,” Journal of colloid and interface science, vol. 311, no. 2, 2007, pp. 417–424.
[11]M. Blosi, S. Albonetti, M. Dondi, C. Martelli, and G. Baldi, “Microwave-assisted polyol synthesis of Cu nanoparticles,” J Nanopart Res, vol. 13, no. 1, pp. 127–138, Jul. 2010.
[12]S. S. Joshi, S. F. Patil, V. Iyer, and S. Mahumuni, “Radiation induced synthesis and characterization of copper nanoparticles,” Nanostructured materials, vol. 10, no. 7, 1998, pp. 1135–1144.
[13]Xiangling Xu, Yadong Yin, Xuewu Ge, Hongkai Wu, and Zhicheng Zhang, “γ-Radiation synthesis of poly(acrylic acid)–metal nanocomposites,” Materials Letters, vol. 37, no. 6, 1998, pp. 354–358.
[14]H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, and S. H. Tang, “Synthesis, characterization, and nonlinear optical properties of copper nanoparticles,” Langmuir, vol. 13, no. 2, 1997, pp. 172–175.
[15]郭清癸,黃俊傑,牟中原,「金屬奈米粒子的製造」,物理雙月刊,第二十三卷,第六期,2001,第614–624頁。
[16]G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, and G. Martra, “Nanoscale Copper Particles Derived from Solvated Cu Atoms in the Activation of Molecular Oxygen,” Chemistry of Materials, vol. 14, no. 3, 2002, pp. 1183–1186.
[17]Fumitaka Mafuné,, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant,” J. Phys. Chem. B, vol. 105, no. 22, 2001, pp. 5114–5120.
[18]Ming-Shin Yeh, Y.-S. Yang, Y.-P. Lee, H.-F. Lee, Y.-H. Yeh, and C.-S. Yeh, “Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol,” J. Phys. Chem. B, vol. 103, no. 33, 1999, pp. 6851–6857.
[19]R. Kelly, “Thermal effects in sputtering,” Surface Science, vol. 90, no. 2, 1979, pp. 280–318.
[20]Y. H. Kim, Y. S. Kang, W. J. Lee, B. G. Jo, and J. H. Jeong, “Synthesis of Cu Nanoparticles Prepared by Using Thermal Decomposition of Cu-oleate Complex,” Molecular Crystals and Liquid Crystals, vol. 445, no. 1, 2006, pp. 231/[521]–238/[528].
[21]Y. H. Kim, D. K. Lee, B. G. Jo, J. H. Jeong, and Y. S. Kang, “Synthesis of oleate capped Cu nanoparticles by thermal decomposition,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 284, pp. 364–368, 2006.
[22]Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Advanced Materials, vol. 15, no. 4, 2003, pp. 303–305.
[23]Z. Liu, Y. Gao, and Y. Bando, “Highly effective metal vapor absorbents based on carbon nanotubes,” Applied Physics Letters, vol. 81, no. 25, 2002, pp. 4844-4846.
[24]N. Arul Dhas, C. Paul Raj, and A. Gedanken, “Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles,” Chemistry of Materials, vol. 10, no. 5, 1998, pp. 1446–1452.
[25]H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone),” Langmuir, vol. 12, no. 4, 1996, pp. 909–912.
[26]A. Yanase and H. Komiyama, “In situ observation of oxidation and reduction of small supported copper particles using optical absorption and X-ray diffraction,” Surface science, vol. 248, no. 1–2, 1991, pp. 11–19.
[27]C.-C. Huang, J. R. Hwu, W.-C. Su, D.-B. Shieh, Y. Tzeng, and C.-S. Yeh, “Surfactant-Assisted Hollowing of Cu Nanoparticles Involving Halide-Induced Corrosion–Oxidation Processes,” Chemistry - A European Journal, vol. 12, no. 14, 2006, pp. 3805–3810.
[28]Z. LI, P. GONG, and Y. ZHAI, “Effect of Granularity on Anti-Oxidizing Ability of Copper Nano-Powder,” Journal of Iron and Steel Research, International, vol. 14, no. 5, 2007, pp. 126–129.
[29]S. H. Wu and D. H. Chen, “Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions,” Journal of colloid and interface science, vol. 273, no. 1, 2004, pp. 165–169.
[30]T.-Y. Dong, H.-H. Wu, and M.-C. Lin, “Superlattice of Octanethiol-Protected Copper Nanoparticles,” Langmuir, vol. 22, 2006, pp. 6754–6756.
[31]N.A. Luechinger, E. K. Athanassiou, and W. J. Stark, “Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics,” Nanotechnology, vol. 19, no. 44, 2008, pp. 445201-445206.
[32]温诗铸,黄平,摩擦学原理,北京:清华大学出版社,,2002。
[33]J. T. Burwell Jr, “Survey of possible wear mechanisms,” Wear, vol. 1, no. 2, 1957, pp. 119–141.
[34]J•霍林,摩擦学原理,上海:机械工业出版社,1981。
[35]T.曼格,W.德雷泽尔,润滑剂与润滑,北京:化学工业,2003。
[36]Q. Sunqing, D. Junxiu, and C. Guoxu, “A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils,” Lubrication Science, vol. 11, no. 3, 1999, pp. 217–226.
[37]X. Tao, Z. Jiazheng, and X. Kang, “The ball-bearing effect of diamond nanoparticles as an oil additive,” Journal of Physics D: Applied Physics, vol. 29, no.11, 1996, pp. 2932-2937.
[38]Z. Zhang, Q. Xue, and J. Zhang, “Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified Mo—S compound nanoclusters,” Wear, vol. 209, no. 1–2, 1997, pp. 8–12.
[39]Qiu Sunqing, Dong Junxiu, and Chen Guoxu, “Tribological properties of CeF3 nanoparticles as additives in lubricating oils,” Wear, vol. 230, no. 1, 1999, pp. 35-38.
[40]Jingfang Zhou, Zhishen Wu, Zhijun Zhang, Weimin Liu, and Hongxin Dang, “Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin,” Wear, vol. 249, no. 5-6, 2001, pp. 333-337.
[41]Z. Hu, R. Lai, F. Lou, L. Wang, Z. Chen, G. Chen, and J. Dong, “Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive,” Wear, vol. 252, no. 5–6, 2002, pp. 370–374.
[42]Z. Hu, J. Dong, G. Chen, and J. He, “Preparation and tribological properties of nanoparticle lanthanum borate,” Wear, vol. 243, no. 1–2, 2000, pp. 43–47.
[43]Z. Hu, J. Dong, and G. Chen, “Study on antiwear and reducing friction additive of nanometer ferric oxide,” Tribology international, vol. 31, no. 7, 1998, pp. 355–360.
[44]Z. Hu and J. Dong, “Study on antiwear and reducing friction additive of nanometer titanium borate,” wear, vol. 216, no. 1, 1998, pp. 87–91.
[45]Z. Hu and J. Dong, “Study on antiwear and reducing friction additive of nanometer titanium oxide,” Wear, vol. 216, no. 1, 1998, pp. 92–96.
[46]J. X. Dong and Z. S. Hu, “A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate,” Tribology International, vol. 31, no. 5, 1998, pp. 219–223.
[47]J. Zhou, J. Yang, Z. Zhang, W. Liu, and Q. Xue, “Study on the structure and tribological properties of surface-modified Cu nanoparticles,” Materials Research Bulletin, vol. 34, no. 9, 1999, pp. 1361–1367.
[48]S. Tarasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, “Study of friction reduction by nanocopper additives to motor oil,” Wear, vol. 252, no. 1–2, 2002, pp. 63–69.
[49]X. Wang, B. Xu, Y. Xu, H. Yu, P. Shi, and Q. Liu, “Preparation of nano-copper as lubrication oil additive,” Journal of central south university of technology, vol. 12, no. 2, 2005, pp. 203–206.
[50]H. Yu, Y. Xu, P. Shi, B. Xu, X. L. Wang, and Q. Liu, “Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 3, 2008, pp. 636–641.
[51]Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, and M. Jung, “Tribological behavior of copper nanoparticles as additives in oil,” Current Applied Physics, vol. 9, no. 2, 2009, pp. e124–e127.
[52]S. Qiu, Z. Zhou, J. Dong, and G. Chen, “Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils,” J. Tribol., vol. 123, no. 3, 2001, pp. 441-443.
[53]L. Rapoport, V. Leshchinsky, Y. Volovik, M. Lvovsky, O. Nepomnyashchy, Y. Feldman, R. Popovitz-Biro, and R. Tenne, “Modification of contact surfaces by fullerene-like solid lubricant nanoparticles,” Surface and Coatings Technology, vol. 163-164, 2003, pp. 405–412.
[54]P. Ye, X. Jiang, S. Li, and S. Li, “Preparation of NiMoO2S2 nanoparticle and investigation of its tribological behavior as additive in lubricating oils,” Wear, vol. 253, no. 5-6, 2002, pp. 572–575.
[55]Y. Y. Wu, W. C. Tsui, and T. C. Liu, “Experimental analysis of tribological properties of lubricating oils with nanoparticle additives,” Wear, vol. 262, no. 7–8, 2007, pp. 819–825.
[56]M. Zhang, X. Wang, X. Fu, and Y. Xia, “Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin,” Tribology International, vol. 42, no. 7, 2009, pp. 1029–1039.
[57]Yongjian Gao, Guoxu Chen, Ya Oli, Zhijun Zhang, and Qunji Xue, “Study on tribological properties of oleic acid-modified TiO2 nanoparticle in water,” Wear, vol. 252, no. 5-6, 2002, pp. 454-458.
[58]Xiaohong Kang, Bin Wang, Lei Zhu, and Hong Zhu, “Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles,” Wear, vol. 265, no. 1–2, 2008, pp. 150-154.
[59]D. Peng, Y. Kang, R. Hwang, S. Shyr, and Y. Chang, “Tribological properties of diamond and SiO2 nanoparticles added in paraffin,” Tribology international, vol. 42, no. 6, 2009, pp. 911–917.
[60]D. Jiao, S. Zheng, Y. Wang, R. Guan, and B. Cao, “The tribology properties of alumina/silica composite nanoparticles as lubricant additives,” Applied Surface Science, vol. 257, no. 13, 2011, pp. 5720–5725.
[61]G. Xue and J. Ding, “Chemisorption of a compact polymeric coating on copper surfaces from a benzotriazole solution,” Applied surface science, vol. 40, no. 4, pp. 327–332, 1990.
[62]G. W. Poling, “Reflection infra-red studies of films formed by benzotriazole on Cu,” Corrosion Science, vol. 10, no. 5, pp. 359–370, 1970.
[61]ASTM Standard, “Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” Annual Book of ASTM Standards, G99-05, Vol. 03.02, West Conshohocken, PA, 2010.
[62]JIS Standards, “High carbon chromium bearing steels,” JIS Handbook Heat Treatment, JIS G 4805:2008(E), Minato-ku, Tokyo, 2010.
[63]T. Srivatsan, B. Ravi, A. Naruka, L. Riester, S. Yoo, and T. Sudarshan, “A study of microstructure and hardness of bulk copper sample obtained by consolidating nanocrystalline powders using plasma pressure compaction,” Materials Science and Engineering: A, vol. 311, no. 1, 2001, pp. 22–27.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top