跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林頌皓
研究生(外文):Sung-Hao Lin
論文名稱:電聚合3,4-乙烯二氧噻吩之研究
論文名稱(外文):Electropolymerization of 3,4-Ethylenedioxythiophene
指導教授:廖義田
口試委員:陳志恆吳汝瑜
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:導電高分子共軛系統聚噻
外文關鍵詞:conductive polymersconjugate polymerspolythiophene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
導電高分子為有機高分子聚合物但帶有導電性質。此類聚合物擁有與金屬相似的導電性,可做為半導體材料。導電高分子鏈上獨特的單鍵、雙鍵交替而成的共軛系統,是導電高分子具有導電性的關鍵。
導電高分子的最大優點是它的可加工性及光電性質。目前則成為熱門的高分子光電材料,其應用廣泛如:有機發光二極體、有機場效電晶體、電致變色材料及太陽能光電材料等等。
本實驗將聚噻吩接上矽氧烷之側鏈基,由於聚噻吩本身為溫變色分子,且矽氧烷具有耐熱性佳、抗低溫性、絕緣性佳及疏水性佳等等之優點。同時矽氧烷之側鏈又非常柔軟,因此矽氧烷類高分子容易和其他高分子結合,生成崁段、接枝或互穿網路的共聚物,將聚矽氧烷的特性引到有機高分子中已獲得許多的應用。
本實驗為研究電聚合3,4-乙烯二氧噻吩的共聚合物,3,4-乙烯二氧噻吩得熱安定性差,共聚合含有矽氧烷的3,4-乙烯二氧噻吩結果耐熱性有急遽增加,在太陽能電池的電極上將可取代白金,具經濟的優勢。電聚合具有簡便、良好導電度的優點。本研究用FTIR等儀器鑑定導電高分子的物性。


Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have conduct electricity. The biggest advantage of conductive polymers is their processability, mainly by dispersion in solvent. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.
Conductive polymers have promise in antistatic materials and they have been incorporated into commercial displays and batteries, but there have had limitations due to the manufacturing costs, material inconsistencies, toxicity, poor solubility in solvents, and inability to directly melt process. Literature suggests they are also promising in organic solar cells, printing electronic circuits, organic light-emitting diodes, actuators, electrochromism, supercapacitors, chemical sensors and biosensors, flexible transparent displays, electromagnetic shielding and possibly replacement for the popular transparent conductor indium tin oxide.
EDOT is electropolymerized with different dopants and electrolytes. It is also modified by silane treatments.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻回顧 3
2.1 導電高分子之介紹 3
2.1.1 導電高分子之歷史 3
2.1.2 導電高分子之簡介 5
2.1.3 導電高分子之種類 5
2.1.4 導電高分子之合成方法 7
2.1.5 導電高分子之分子基礎 7
2.1.6 導電高分子之共軛系統 9
2.1.7 導電高分子之性質和應用 10
2.2聚噻吩系統之介紹 12
2.2.1 聚噻吩系統之簡介 12
2.2.2 聚噻吩系統之導電和參雜機制 13
2.2.3 聚噻吩系統之結構和光學性質 14
2.2.4 聚噻吩系統之合成方法 18
2.2.5 聚噻吩系統之應用 25
2.3 矽烷系統之介紹 27
2.3.1 矽烷系統之簡介 27
2.3.2 矽烷系統之製備 27
2.3.3 矽烷系統之性質 29
2.3.4 矽烷系統之應用 29
2.3.5 矽烷系統之安全及注意事項 30
2.4 矽氧烷系統之介紹 31
2.4.1 矽氧烷系統之簡介 31
2.4.2 矽氧烷系統之命名 31
2.4.3 矽氧烷系統之製備 32
2.4.4 矽氧烷系統之應用 32
2.5 循環伏安法之介紹 33
2.5.1 循環伏安法之簡介 33
2.5.2 循環伏安法之實驗方法 33
2.5.3 循環伏安法之特徵 34
2.5.4循環伏安法之實驗裝置 35
2.5.5 循環伏安法之多樣性 36
2.5.6 循環伏安法之區別 37
2.6 電化學合成之介紹 38
2.6.1 電化學合成之有機電化學合成 38
2.6.2 電化學合成之材料和電極的選擇 39
2.6.3 電化學合成之裝置 40
2.6.4 電化學合成之方法 41
第三章 實驗部分 43
3.1 藥品與溶劑 43
3.2 儀器分析與樣品備製 45
3.2.1 紅外光吸收光譜 45
3.2.2 四點探針方法 56
3.3 聚3,4-乙烯二氧噻吩之實驗方法與步驟 59
3.3.1 清洗工作電極 59
3.3.2 3,4-乙烯二氧噻吩單體及電解液配製 59
3.3.3 電聚合3,4-乙烯二氧噻吩薄膜之製備 59
3.3.4 電聚合3,4-乙烯二氧噻吩薄膜之條件 60
3.3.5 加入參雜物及溫度對電聚合3,4-乙烯二氧噻吩之影響 60
3.4 3,4-乙烯二氧噻吩與矽氧烷共聚物之實驗方法與步驟 62
3.4.1 噻吩與矽氧烷之合成 62
3.4.2 清洗工作電極 62
3.4.3 3,4-乙烯二氧噻吩單體與矽氧烷及電解液配製 63
3.4.4 電聚合3,4-乙烯二氧噻吩與矽氧烷共聚物薄膜之製備 63
3.4.5 電聚合3,4-乙烯二氧噻吩與矽氧烷共聚物薄膜之條件 63
3.4.6 比較電聚合3,4-乙烯二氧噻吩與其共聚物之加熱前後影響 64
第四章 結果與討論 65
4.1 3,4-乙烯二氧噻吩單體及其聚合物之探討分析 65
4.1.1 單體及其聚合物之FTIR分析 65
4.1.2 聚3,4-乙烯二氧噻吩之導電度比較 66
4.2 3,4-乙烯二氧噻吩與矽氧烷共聚物之探討分析 69
4.2.1 矽氧烷及其共聚物之FTIR分析 69
4.2.1 矽氧烷及其共聚物之熱穩定性之探討 71
第五章 結論 73
參考文獻 74

1.Inzelt, György (2008). "Chapter 8: Historical Background (Or: There Is Nothing New Under the Sun)". In Scholz, F.. Conducting Polymers: A New Era in Electrochemistry. Monographs in Electrochemistry. Springer. pp. 265–267.
2.Hush, Noel S. (2003). "An Overview of the First Half-Century of Molecular Electronics". Annals of the New York Academy of Sciences 1006: 1–20.
3.Y. Okamoto and W. Brenner Organic Semiconductors, Rheinhold (1964)
4.Akamatu, Hideo; Inokuchi, Hiroo; Matsunaga, Yoshio (1954). "Electrical Conductivity of the Perylene–Bromine Complex". Nature 173 (4395): 168.
5.Little, W. A. (1964). "Possibility of Synthesizing an Organic Superconductor". Physical Review 134 (6A): A1416.
6.B A Bolto, R McNeill and DE Weiss "Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole" Australian Journal of Chemistry 16(6) 1090, 1963.
7.McNeill, R; Weiss, DE; Willis, D (1965). "Electronic conduction in polymers. IV. Polymers from imidazole and pyridine". Australian Journal of Chemistry 18 (4): 477.
8.Bolto, BA; Weiss, DE; Willis, D (1965). "Electronic conduction in polymers. V. Aromatic semiconducting polymers". Australian Journal of Chemistry 18 (4): 487.
9.Organic Semiconductors by Yoshikuko Okamoto and Walter Brenner, Reinhold (1964). Chapt.7, Polymers, pp125-158
10.De Surville, R.; Jozefowicz, M.; Yu, L.T.; Pepichon, J.; Buvet, R. (1968). "Electrochemical chains using protolytic organic semiconductors". Electrochimica Acta 13 (6): 1451.
11.Diaz, A; Logan, J (1980). "Electroactive polyaniline films". Journal of Electroanalytical Chemistry 111: 111.
12.Nicolaus, R; Piattelli, M; Fattorusso, E (1964). "The structure of melanins and melanogenesis—IV , On some natural melanins". Tetrahedron 20 (5): 1163–72.
13.Shirakawa, Hideki; Louis, Edwin J.; MacDiarmid, Alan G.; Chiang, Chwan K.; Heeger, Alan J. (1977). "Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x". Journal of the Chemical Society, Chemical Communications (16): 578.
14.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990). "Light-emitting diodes based on conjugated polymers". Nature 347 (6293): 539.
15.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck (1999). "Electroluminescence in conjugated polymers". Nature 397: 121–128.
16.Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H.S., Ed.; Academic Press: New York, NY, USA, 2000; Volume 5, pp. 501–575.
17.Naarmann, Herbert (2000). "Polymers, Electrically Conducting". Ullmann''s Encyclopedia of Industrial Chemistry.
18.McGinness, John E. (1972). "Mobility Gaps: A Mechanism for Band Gaps in Melanins". Science 177 (4052): 896–897.
19.Cattena, Carlos J.; Bustos-Marun, Raul A.; Pastawski, Horacio M. (2010). "Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study". Physical Review B 82 (14): 144201.
20.Lange, Ulrich; Roznyatovskaya, Nataliya V.; Mirsky, Vladimir M. (2008). "Conducting polymers in chemical sensors and arrays". Analytica Chimica Acta 614 (1): 1–26.
21.Street, G. B.; Clarke, T. C. IBM J. Res. Dev. 1981, 25, 51–57.
22.McCullough, Richard D. (1998). "The Chemistry of Conducting Polythiophenes". Advanced Materials 10 (2): 93.
23.Mastragostino, M.; Soddu, L. (1990). "Electrochemical characterization of "n" doped polyheterocyclic conducting polymers. Polybithiophene". Electrochimica Acta 35 (2): 463.
24.Rudge, Andy; Raistrick, Ian; Gottesfeld, Shimshon; Ferraris, John P. (1994). "A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors". Electrochimica Acta 39 (2): 273.
25.Bässler, H. Electronic Excitation. In Electronic Materials: The Oligomer Approach; Müllen, K.; Wegner, G., Eds.; Wiley-VCH: Weinheim, Germany 1998.
26.Andersson, M.; Ekeblad, P. O.; Hjertberg, T.; Wennerström, O.; Inganäs, O. Polym. Commun. 1991, 32, 546–548.
27.Xu, Bai; Holdcroft, Steven (1993). "Molecular control of luminescence from poly(3-hexylthiophenes)". Macromolecules 26 (17): 4457.
28.Desimone, J. M.; Guan, Z.; Elsbernd, C. S. (1992). "Synthesis of Fluoropolymers in Supercritical Carbon Dioxide". Science 257 (5072): 945.
29.Roncali, J.; Garreau, R.; Yassar, A.; Marque, P.; Garnier, F.; Lemaire, M. (1987). "Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkylthiophenes)". The Journal of Physical Chemistry 91 (27): 6706.
30.Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. U.S. Patent 5,035,926, 1991.
31.Laakso, J; Jarvinen, H; Skagerberg, B (1993). "Recent developments in the polymerization of 3-alkylthiophenes". Synthetic Metals 55 (2–3): 1204.
32.Olinga, T (1995). "Kinetics of polymerization of thiophene by FeCl3 in choloroform and acetonitrile". Synthetic Metals 69: 297.
33.Martina, V.; Ionescu, K.; Pigani, L.; Terzi, F.; Ulrici, A.; Zanardi, C.; Seeber, R. Anal. Bioanal. Chem. 2007, 387, 2101-2110.
34.Lemaire, Marc; Delabouglise, Didier; Garreau, Robert; Guy, Alain; Roncali, Jean (1988). "Enantioselective chiral poly(thiophenes)". Journal of the Chemical Society, Chemical Communications (10): 658.
35.Shriver and Atkins. Inorganic Chemistry (5th Edition). W. H. Freeman and Company, New York, 2010, 358.
36.J. W. Mellor "A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. VI" Longmans, Green and Co. (1947) pp. 970–971.
37.M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, Y. Yao (2008). "Superconductivity in Hydrogen Dominant Materials: Silane". Science 319 (5869): 1506–1509.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊