跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/28 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳淑媛
研究生(外文):Shu-Yuan Chen
論文名稱:聚(3-己烷基噻吩)與生物可降解聚乳酸混摻之有機場效電晶體及其型態和光電特性研究
論文名稱(外文):Morphology and Optoelectronic Property of Organic Field-Effect Transistors from Blends of Poly(3-hexylthiophene) and Biodegradable Poly(lactic acid)
指導教授:郭霽慶
口試委員:蔡榮訓游洋雁
口試日期:2012-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:60
中文關鍵詞:聚(3-己烷基噻吩)聚乳酸混摻形態場效電晶體
外文關鍵詞:P3HTPLAblendsmorphologyfield-effect transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在探討P3HT與具環保生物可降解的PLA混摻系統,在兩種不同的溶劑(二氯甲烷以及三氯甲烷),對其形態以及有機場效電晶體電洞遷移率的影響 。因為P3HT對此兩種溶劑(二氯甲烷以及三氯甲烷)的溶解度不同,因而造成形態以及光電特性上的差異。在元件的電性表現上,二氯甲烷的系統遠優於三氯甲烷的系統。溶解度較差的二氯甲烷可誘發P3HT形成網路連結的一維奈米線形態,進而獲得較好的元件表現,在P3HT的混摻濃度為10 wt %時,電洞遷移率為5.30x10-3 cm2/Vs與開關電流比(on/off ratio)為3.23×103,且在混摻濃度極微量2 wt %的P3HT,其電洞遷移率仍可維持在1.76x10-3 cm2/Vs。反觀P3HT在較佳溶解度的三氯甲烷的混摻系統中,P3HT形成球狀的微相分離結構導致電洞傳遞率顯著下降到3.68x10-7 cm2/Vs。綜上所述,我們成功使用P3HT/PLA在二氯甲烷的混摻系統中,製備出較低成本、具綠色環保及高效能的場效電晶體電元件。

The influence of the solvent on the charge transport and morphology of the polymer blends of poly(3-hexylthiophene) (P3HT) and poly (lactic acid) (PLA), biodegradable polymer, are investigated in this study. The electrical characteristics of blend systems had huge distinction between dichloromethane (CH2Cl2) and chloroform (CHCl3) because their different solubility for P3HT. The films prepared from dichloromethane, poor solvent for P3HT, tended to form well-defined nanowires, attributed to the self-assembly of the P3HT through the solubility-induced process. In the P3HT/PLA blend systems in CH2Cl2, compared with different ratio, the content of P3HT at 10 wt % had mobility of 5.30x10-3 cm2/Vs and on/off ratio of 3.23×103. On the other hand, even the content of P3HT as low as 2 wt % still kept the mobility of 1.76x10-3 cm2/Vs. However, in the blend systems in CHCl3, the mobility decreased dramatically with the increased contents of PLA and there was almost no electrical characteristic at the content of P3HT at 50 wt % due to their sphere phase-separated morphology of P3HT aggregation. These results indicated that we succeed in fabricating the environment-friendly field-effect transistors based on P3HT/PLA blends with low cost and maintaining the device performance using CH2Cl2 as solubility-induced solvent.

中文摘要 i
Abstract ii
Contents iv
Table Captions vi
Figure Captions vii
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Research purpose 2
Chapter 2 Literature review and basic theories 3
2-1 Conductive polymers 3
2-2 Biodegradable polymers 5
2-3 Organic field-effect transistors (OFETs) 9
2-3-1 Devices structures of OFETs 9
2-3-2 Working principles of OFETs 10
2-3-3 Characterization of OFETs 12
2-3-4 Factors toward enhancing performance of OFETs 15
2-4 Polymer blends for OFETs application 19
Chapter 3 Experiment 23
3-1 Materials 23
3-2 Instrument 24
3-3 Devices fabrication 25
3-4 Characterization 27
3-4-1 Electronic measurement 27
3-4-2 Thermal properties measurement 27
3-4-3 UV-vis measurement 28
3-4-4 Morphology observation 28
Chapter 4 Results and discussion 29
4-1 Thermal properties 29
4-1-1 TGA analysis 29
4-1-2 DSC analysis 30
4-2 Optical properties 33
4-2-1 UV-vis analysis of solution states 33
4-2-2 UV-vis analysis of thin film states 35
4-3 Characterization of organic field-effect transistors 37
4-4 Morphology analysis 41
4-4-1 SEM observation 41
4-4-2 TEM observation 46
4-5 Air stability 50
Chapter 5 Conclusions 56
Chapter 6 References 57


1.Zhao, K., et al., Crystallization-Induced Phase Segregation Based on Double-Crystalline Blends of Poly(3-hexylthiophene) and Poly(ethylene glycol)s. Macromolecular Rapid Communications, 2010. 31(6): p. 532-538.
2.Shikinami*, Y. and M. Okuno, Bioresorbable devices made of forged composites of hydroxyapatite(HA) particles and poly l-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 2001. 22 p. 3197-3211.
3.Tsuji, H., In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4:well-homo-cryst allized blend and nonblended films. Biomaterials, 2003. 24: p. 537-547.
4.Li*, S. and M. Vert, Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization of L(D)-Lactide in the Presence of Poly(ethylene glycol). Macromolecules 2003. 36 p. 8008-8014.
5.Ho, V., et al., Poly(3-alkylthiophene) Diblock Copolymers with Ordered Microstructures and Continuous Semiconducting Pathways. Journal of the American Chemical Society, 2011. 133(24): p. 9270-9273.
6.Grancharov, G., et al., Stereocomplexed Materials Based on Poly(3-hexylthiophene)-b-poly(lactide) Block Copolymers: Synthesis by Organic Catalysis, Thermal Properties, and Microscopic Morphology. Macromolecules, 2010. 43(21): p. 8957-8964.
7.Heeger, A.J., J.R. Schrieffer, and W.P. Su, Solitons in conducting polymers. Reviews of Modern Physics, 1988. 60(3): p. 781-850.
8.Wilson, S.A., et al., New materials for micro-scale sensors and actuators. Materials Science and Engineering: R: Reports, 2007. 56(1-6): p. 1-129.
9.H.A.M. van Mullekoma, et al., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering: R: Reports, 2001. 32.
10.Yang, H.C., et al., Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Advanced Functional Materials, 2005. 15(4): p. 671-676.
11.Cho, S., et al., Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. Journal of Applied Physics, 2006. 100(11): p. 114503.
12.Aminabhavi, T.M., R.H. Balundgi, and P.E. Cassidy, A Review on Biodegradable Plastics. Polymer-Plastics Technology and Engineering, 1990. 29(3): p. 235-262.
13.Stevens, E.S., What makes green plastics green? Biocycle, 2003. 44(3): p. 24-27.
14.Narayanan, N., P.K. Roychoudhury, and A. Srivastava, L (+)lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 2004. 7(2): p. 167-U2.
15.Gupta, A.P. and V. Kumar, New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 2007. 43(10): p. 4053-4074.
16.Middleton, J.C. and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335-2346.
17.Facchetti, A., Semiconductors for organic transistors. Materials Today, 2007. 10(3): p. 28-37.
18.Ling, M.-M. and Z. Bao, Copper hexafluorophthalocyanine field-effect transistors with enhanced mobility by soft contact lamination. Organic Electronics, 2006. 7(6): p. 568-575.
19.Newman, C.R., et al., Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chemistry of Materials, 2004. 16(23): p. 4436-4451.
20.Lee, W.Y., et al., Synthesis of new fluorene-indolocarbazole alternating copolymers for light-emitting diodes and field effect transistors. Polymer Journal, 2008. 40(3): p. 249-255.
21.Zaumseil, J. and H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chemical Reviews, 2007. 107(4): p. 1296-1323.
22.Dennler, G., et al., Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells?Towards 15 % Energy-Conversion Efficiency. Advanced Materials, 2008. 20(3): p. 579-583.
23.Park, J.W., et al., Conformationally Twisted Semiconducting Polythiophene Derivatives with Alkylthiophene Side Chain: High Solubility and Air Stability. Macromolecules, 2010. 43(5): p. 2118-2123.
24.Joseph Kline, R., M.D. McGehee, and M.F. Toney, Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 2006. 5(3): p. 222-228.
25.Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999. 401(6754): p. 685-688.
26.Kline, R.J., et al., Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005. 38(8): p. 3312-3319.
27.Chang, J.F., et al., Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chemistry of Materials, 2004. 16(23): p. 4772-4776.
28.Kumar, A., et al., Efficient, StableBulkCharge Transport in Crystalline/Crystalline Semiconductorâ?寣兌nsulator Blends. Advanced Materials, 2009. 21(44): p. 4447-4451.
29.Babel, A. and S.A. Jenekhe, Charge carrier mobility in blends of poly(9,9-dioctylfluorene) and poly(3-hexylthiophene). Macromolecules, 2003. 36(20): p. 7759-7764.
30.Russell, D.M., et al., Blends of semiconductor polymer and small molecular crystals for improved-performance thin-film transistors. Applied Physics Letters, 2005. 87(22): p. 222109.
31.Sparrowe, D., M. Baklar, and N. Stingelin, Low-temperature printing of crystalline:crystalline polymer blend transistors. Organic Electronics, 2010. 11(7): p. 1296-1300.
32.Babel, A. and S.A. Jenekhe*, Field-Effect Mobility of Charge Carriers in Blends of Regioregular Poly(3-alkylthiophene)s. J. Phys. Chem, 2003. 107: p. 1749-1754.
33.Smith, J., et al., Solution-processed organic transistors based on semiconducting blends. Journal of Materials Chemistry, 2010. 20(13): p. 2562.
34.Goffri, S., et al., Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nature Materials, 2006. 5(12): p. 950-956.
35.Nicho, M.E., et al., Influence of P3HT concentration on morphological, optical and electrical properties of P3HT/PS and P3HT/PMMA binary blends. Materials Science and Engineering: B, 2011. 176(17): p. 1393-1400.
36.Kergoat, L., et al., Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors. Organic Electronics, 2011. 12(7): p. 1253-1257.
37.Qiu, L., et al., Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Advanced Materials, 2009. 21(13): p. 1349-1353.
38.Lee, Y., et al., Phase behavior of poly(3-alkylthiophene)/polystyrene blends. Polymer, 2009. 50(20): p. 4944-4949.
39.Brown, P., et al., Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Physical Review B, 2003. 67(6).
40.Park, Y.D., et al., Solubility-Induced Ordered Polythiophene Precursors for High-Performance Organic Thin-Film Transistors. Advanced Functional Materials, 2009. 19(8): p. 1200-1206.
41.Babel, A. and S.A. Jenekhe, Morphology and field-effect mobility of charge carriers in binary blends of poly(3-hexylthiophene) with poly 2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene and polystyrene. Macromolecules, 2004. 37(26): p. 9835-9840.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊