跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許閔順
研究生(外文):MinShun, Hsu
論文名稱:二氧化鈦及氧化鋅不同混摻比例在染料敏化太陽能電池之應用
論文名稱(外文):The Study of Various Mixed Ratios of TiO2 to ZnO for Dye-sensitized Solar Cells
指導教授:蘇昭瑾
口試委員:李文仁江慧宜
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:二氧化鈦氧化鋅核殼奈米粒子混摻染料敏化太陽能電池
外文關鍵詞:Titanium DioxideZinc OxideCore-Shell nanoparticlesBlendingDye-sensitzed Solar Cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅與二氧化鈦相比,有相近的能量間隙及位置,且氧化鋅有較快的電子移動速率,並可在低溫下合成形成結晶,一般最常見的為纖鋅礦。氧化鋅應用在染料敏化太陽能電池(DSSC),可使電子再結合速率下降提升電池效率,潛力高且易製備。但氧化鋅應用在染料敏化太陽能電池上,效率與二氧化鈦光陽極相比都來得低,原因之一為浸泡染料時間的長短,愈長的時間下,氧化鋅表面上的鋅原子被溶解,與酸性染料過度的結塊產生鋅離子與染料的錯合物(Zn2+/dye complex),當錯合物從單層聚集成多層時,會使電子活性減少,電子從染料注入氧化鋅的能力下降,染料吸附量降低,造成電池效率下降,而有文獻證實在較短的染料浸泡時間下,可以避免形成此團聚錯合物。而最終產物的尺寸、晶型、結構對於染料敏化太陽能電池也有深遠的影響。
本實驗分為五個部分,分別是:溶膠-凝膠法合成氧化鋅奈米聚集物;水熱法合成氧化鋅奈米粒子;以溶膠-凝膠法製備無晶型二氧化鈦包覆氧化鋅奈米粒子;不同比例混摻氧化鋅與二氧化鈦及氧化鋅與二氧化鈦薄膜分層的混合,探討物理混合及化學混合對染料敏化太陽能電池的影響。最後分析不同方法合成的氧化鋅及二氧化鈦與氧化鋅的混摻,在染料敏化太陽能電池上的應用,並以穿透式電子顯微鏡、掃描式電子顯微鏡、X光繞射儀和染料吸附量進行鑑定與分析,並以模擬太陽光效率分析及入射單色光子-電子轉換效率等進行元件分析。


In addition to the widely used TiO2 photoanodes in dye-sensitized solar cells (DSSCs), ZnO is gaining particular importance due to its higher electron mobility than that of anatase TiO2. ZnO possess a similar band gap (3.3 eV) compared to that of TiO2, and it can crystallize under low temperature. ZnO crystallizes in two different forms, in which wurtzite structure is the most stable phase. ZnO has unique properties such as high potential, easy preparation, higher binding energy and so on. Due to its high electron mobility, the recombination of electrons will be reduced and hence the lifetime of the DSSCs will be high in ZnO based photoanodes. However, the application of ZnO in DSSCs has obtained a lower efficiency when compared with TiO2 photoanode. This can be due to the longer immersion time of ZnO film in dye. While the ZnO films are immersed in dye for long duration, Zn on the surface of ZnO will start to dissolve and the formation of Zn2+/dye complex will occur. These Zn2+/dye complex can form an agglomerated thick layer, which hinders the electron injection. This can be avoiding by the immersion of ZnO film in dye for short duration. The formation of ZnO nanoparticle size, morphology, and the polymorphs has a profound effect on the dye-sensitized solar cells.
In this thesis, five parts of work has been carried out such as the preparation of aggregated ZnO nanoparticles by sol-gel approach, the preparation of ZnO nanoparticles by hydrothermal approach, the preparation of ZnO@TiO2 core shell NPs by sol-gel approach, the preparation of ZnO/TiO2 composite NPs by blending and the preparation of ZnO/TiO2 using layer by layer approach. These nanomaterials have been used as photoanode in the application of dye-sensitized solar cells. Eventually, different coating methods were performed for the application of these materials in dye-sensitized solar cells. The above prepared samples have been characterized using transmission electron microscopy, scanning electron microscopy and X-ray diffraction analyzes. DSSCs fabricated using these photoanodes were evaluated using I-V measurements, IPCE and dye adsorption analyzes.


摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xi
第一章 緒 論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧與理論基礎 5
2.1 氧化鋅的介紹 5
2.1.1 氧化鋅的結構與特性 5
2.1.2 氧化鋅的製備方式 6
2.1.3 氧化鋅的應用 7
2.2 二氧化鈦的介紹 7
2.2.1 二氧化鈦的構造與特性 7
2.2.2 二氧化鈦的製備方式 9
2.2.3 二氧化鈦的應用 9
2.3 核殼型奈米複合材料的介紹 10
2.4 太陽能電池的簡介 10
2.5 染料敏化太陽能電池 12
2.5.1 染料敏化太陽能電池的背景 13
2.5.2 染料敏化太陽能電池的工作原理 14
2.5.3 染料敏化太陽能電池的組成 15
2.6 溶膠凝膠法合成氧化鋅奈米粒聚集物的文獻回顧 19
2.7 水熱法合成氧化鋅奈米粒子的文獻回顧 20
2.8 二氧化鈦包覆化氧化鋅的核殼結構文獻回顧 21
2.9 不同比例混摻氧化鋅與二氧化鈦的文獻回顧 23
2.10 氧化鋅與二氧化鈦薄膜分層混合的文獻回顧 25
第三章 實驗藥品與儀器應用理論 26
3.1 實驗藥品及實驗儀器清單 26
3.2 大顆粒氧化鋅奈米粒子聚集物之漿料製備 29
3.2.1 溶膠凝膠法製備氧化鋅奈米粒子的聚集物 29
3.2.2 氧化鋅奈米粒子聚集物之漿料製備 30
3.3 小顆粒氧化鋅奈米粒子之漿料製備 31
3.3.1 水熱法製備氧化鋅奈米粒子 31
3.3.2 氧化鋅奈米粒子之漿料製備 32
3.4 溶膠凝膠法製備二氧化鈦包覆氧化鋅奈米粒子 33
3.5 不同比例混摻的氧化鋅與二氧化鈦之漿料製備 35
3.5.1 水熱法製備銳鈦礦相二氧化鈦奈米粒 35
3.5.2 銳鈦礦二氧化鈦奈米粒之漿料製備 36
3.5.3 商業化氧化鋅與銳鈦礦二氧化鈦混摻之漿料 38
3.5.4 商業化氧化鋅與商業化二氧化鈦混摻之漿料 39
3.6 氧化鋅/二氧化鈦的漿料製備 40
3.6.1 商業化二氧化鈦奈米粒之漿料製備 41
3.6.2 商業化氧化鋅奈米粒之漿料製備 42
3.6.3 噴霧嗆噴塗之漿料製備 43
3.7 奈米粒子性質鑑定與分析 44
3.7.1 X光繞射儀(XRD) 44
3.7.2 穿透式電子顯微鏡(TEM)分析 46
3.7.3 掃描式電子顯微鏡(SEM) 47
3.7.4 紫外光/可見光吸收光譜分析(UV/Vis) 48
3.8 染料敏化太陽能電池元件的製備與組裝 49
3.9 染料敏化太陽能電池元件的光電分析 52
3.9.1 電壓-電流特性曲線(I-V curve)的量測 52
3.9.2 入射單色光子-電子轉換效率(IPCE) 54
3.9.3 電化學阻抗頻譜分析儀(EIS) 55
第四章 結果與討論 57
4.1 溶膠凝膠法合成氧化鋅奈米粒子的聚集物 57
4.1.1 X光繞射儀(XRD)分析 58
4.1.2 穿透式電子顯微鏡(TEM)分析 59
4.1.3 掃描式電子顯微鏡(SEM)分析 59
4.1.4電壓-電流特性曲線(I-V curve)的量測 62
4.1.5 入射單色光子-電子轉換效率(IPCE) 63
4.2 水熱法合成氧化鋅奈米粒子 64
4.2.1 X光繞射儀(XRD)分析 64
4.2.2 穿透式電子顯微鏡(TEM)分析 66
4.2.3 掃描式電子顯微鏡(SEM)分析 67
4.2.4電壓-電流特性曲線(I-V curve)的量測 69
4.2.5 入射單色光子-電子轉換效率(IPCE) 71
4.3 溶膠凝膠法合成二氧化鈦包覆氧化鋅奈米粒子 72
4.3.1 X光繞射儀(XRD)分析 72
4.3.2 穿透式電子顯微鏡(TEM)分析 74
4.3.3 電壓-電流特性曲線(I-V curve)的量測 78
4.4 不同比例混摻的氧化鋅與二氧化鈦之工作電極 81
4.4.1 X光繞射儀(XRD)分析 82
4.4.2 穿透式電子顯微鏡(TEM)分析 84
4.4.3 電壓-電流特性曲線(I-V curve)的量測 87
4.4.4 入射單色光子-電子轉換效率(IPCE) 91
4.4.5 電化學阻抗頻譜分析(EIS) 93
4.5 氧化鋅/二氧化鈦漿料製備為工作電極的性質分析 94
4.5.1 電壓-電流特性曲線(I-V curve)的量測 95
4.5.2 入射單色光子-電子轉換效率(IPCE) 100
第五章 結論 102
參考文獻 104

[1] B. O''Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737.
[2] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency”, Science 334 (2011) 629.
[3] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
[4] H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys. 75 (1994) 2042.
[5] H. S. Bae, M. H. Yoon, J. H. Kim, S. Im, “Photodetecting properties of ZnO-based thin-film transistors”, Appl. Phys. Lett. 83 (2003) 5313.
[6] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, “Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn 2+) aggregate formation”, J. Phys. Chem. B 107 (2003) 2570.
[7] K. Westermark, H. Rensmo, H. Siegbahn, K. Keis, A. Hagfeldt, L. Ojamäe, P. Persson, “PES studies of Ru(dcbpyH2)2(NCS)2 adsorption on nanostructured ZnO for solar cell applications”, J. Phys. Chem. B 106 (2002) 10102.
[8] T. P. Chou, Q. Zhang, G. Cao, “Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells”, J. Phys. Chem. C 111 (2007) 18804.
[9] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, “ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells”, J. Phys. Chem. B 110 (2006) 22652.
[10] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells”, Angew. Chem. 47 (2008) 2402.
[11] H. Du, F. Yuan, S. Huang, J. Li, Y. Zhu, “A new reaction to ZnO nanoparticles”, Chem. Lett. 33 (2004) 770.
[12] M. H. Liao, C. H. Hsu, D. H. Chen, “Preparation and properties of amorphous titania-coated zinc oxide nanoparticles”, J. Solid State Chem. 179 (2006) 2020.
[13] 許智雄,碩士論文, "氧化鋅奈米粉體之製備與特性分析", 國立成功大學 (2006)。
[14] J. Cui, “Zinc oxide nanowires”, Mater. Charact. 64 (2012) 43.
[15] K. Y. Jung, Y. C. Kang, S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis”, J. Mater. Sci. Lett. 16 (1997) 1848.
[16] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, M. Muhammed, “High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes”, J. Phys. Chem. B 101 (1997) 2598.
[17] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep. 48 (2003) 53.
[18] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc. 80 (1997) 3157.
[19] M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338.
[20] M. Andersson, L. Österlund, S. Ljungström, A. Palmqvist, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol”, J. Phys. Chem. B 106 (2002) 10674.
[21] J. A. Nav́o, G. Colón, M. Trillas, J. Peral, X. Domènech, J. J. Testa, J. Padrón, D. Rodŕguez, M. I. Litter, “Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method”, Appl. Catal., B 16 (1998) 187.
[22] I. H. Tseng, W. C. Chang, J. C. S. Wu, “Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts”, Appl. Catal., B 37 (2002) 37.
[23] S.-J. Roh, R. S. Mane, S.-K. Min, W.-J. Lee, C. D. Lokhande, S.-H. Han, “Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells”, Appl. Phys. Lett. 89 (2006) 253512.
[24] 楊采穎,碩士論文, "二氧化鈦奈米棒的製備與應用:從光催化反應到染料敏化太陽能電池效率之相關性探討", 國立臺北科技大學 (2008)。
[25] D. E. Carlson, C. R. Wronski, “Amorphous silicon solar cell”, Appl. Phys. Lett. 28 (1976) 671.
[26] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2Bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc. 115 (1993) 6382.
[27] M. K. Nazeeruddin, P. Péchy, M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex”, Chemical Communications (1997) 1705.
[28] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobiol., A 164 (2004) 3.
[29] 荒川裕則, "色素增感太陽電池最新技術", 色素增感太陽電池最新技術 214。
[30] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato, A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Sol. Energy Mater. Sol. Cells 81 (2004) 197.
[31] J. H. Yum, S. Nakade, D. Y. Kim, S. Yanagida, “Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides”, J. Phys. Chem. B 110 (2006) 3215.
[32] W. J. Lee, H. Okada, A. Wakahara, A. Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y”, Ceram. Int. 32 (2006) 495.
[33] K. Kakiuchi, E. Hosono, S. Fujihara, “Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719”, J. Photochem. Photobiol., A 179 (2006) 81.
[34] M. Matsui, Y. Hashimoto, K. Funabiki, J. Y. Jin, T. Yoshida, H. Minoura, “Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell”, Synth. Met. 148 (2005) 147.
[35] N. G. Park, J. Van De Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 (2000) 8989.
[36] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, J. Bisquert, “Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations”, J. Phys. Chem. B 107 (2003) 6022.
[37] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981.
[38] G. Schlichthörl, N. G. Park, A. J. Frank, “Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells”, J. Phys. Chem. B 103 (1999) 782.
[39] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, “Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces”, J. Phys. Chem. B 105 (2001) 1422.
[40] T. P. Chou, Q. Zhang, G. E. Fryxell, G. Cao, “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency”, Adv. Mater. 19 (2007) 2588.
[41] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells”, Adv. Funct. Mater. 18 (2008) 1654.
[42] G. Zhu, X. Wang, H. Li, L. Pan, H. Sun, X. Liu, T. Lv, Z. Sun, “Y3Al5O12: Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells”, Chemical Communications 48 (2012) 958.
[43] K. Keis, L. Vayssieres, H. Rensmo, S. E. Lindquist, A. Hagfeldt, “Photoelectrochemical Properties of Nano- to Microstructured ZnO Electrodes”, J. Electrochem. Soc. 148 (2001) A149.
[44] X. Sheng, Y. Zhao, J. Zhai, L. Jiang, D. Zhu, “Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells”, Appl. Phys. A 87 (2007) 715.
[45] A. Elkhidir Suliman, Y. Tang, L. Xu, “Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells 91 (2007) 1658.
[46] Y. J. Shin, S. K. Ki, N. G. Park, S. R. Kwang, H. C. Soon, “Enhancement of photovoltaic properties of Ti-modified nanocrystalline ZnO electrode for dye-sensitized solar cell”, Bull. Korean Chem. Soc. 26 (2005) 1929.
[47] Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, “Electrochemical synthesis of ZnO nanoporous films at low temperature and their application in dye-sensitized solar cells”, J. Electrochem. Soc. 155 (2008) D595.
[48] A. Wei, W. Zhao, J. Liu, Z. Ge, C. Liu, “Dye-Sensitized Solar Cells Based on the Composites Photoanodes of ZnO Microrods/TiO2 Nanoparticles”, Integr. Ferroelectr. 127 (2011) 157.
[49] M. S. Akhtar, J. H. Hyung, D. J. Kim, T. H. Kim, S. K. Lee, O. B. Yang, “A comparative photovoltaic study of perforated ZnO nanotube/TiO2 thin film and ZnO nanowire/TiO2 thin film electrode-based dye-sensitized solar cells”, J. Korean Phys. Soc. 56 (2010) 813.
[50] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coord. Chem. Rev. 248 (2004) 1381.
[51] L. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett. 84 (2004) 2433.
[52] 楊紘先,碩士論文, "以溼式化學法合成氧化鋅/二氧化鈦複合奈米結構之研究", 國立成功大學 (2008)。
[53] Y. S. Chang, Y. H. Chang, I. G. Chen, G. J. Chen, Y. L. Chai, “Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique”, J. Cryst. Growth 243 (2002) 319.
[54] S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, Y. E. Sung, “Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells”, J. Phys. Chem. C 111 (2007) 9614.
[55] 葉宥辰,碩士論文, "二氧化鈦與氧化鋅@二氧化鈦奈米結構對染料敏化太陽能電池效率的影響", 私立東海大學 (2010)。
[56] J. Liu, A. Wei, C. B. Liu, Z. Wang, “Preparation and property of dye-sensitized solar cells based ZnO-TiO2 composite photoanodes”, Fuhe Cailiao Xuebao/Acta Mater 28 (2011) 159.
[57] D. F. Watson, G. J. Meyer, “Cation effects in nanocrystalline solar cells”, Coord. Chem. Rev. 248 (2004) 1391.
[58] S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, “Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells”, Chem. Mater. 13 (2001) 4629.
[59] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Mater. Sci. Eng., R 63 (2009) 81.
[60] C. M. Martin, V. M. Burlakov, H. E. Assender, “Modeling charge transport in composite solar cells”, Sol. Energy Mater. Sol. Cells 90 (2006) 900.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊