跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭彥銘
研究生(外文):Yen-Ming Peng
論文名稱:低溫製備奈米金-氧化鋅薄膜應用於染料敏化太陽能電池之研究
論文名稱(外文):Low temperature preparation of Au/ZnO nanoparticle-based thin films and their applications to dye-sensitized solar cells
指導教授:余琬琴
口試委員:吳仁彰蘇昭瑾
口試日期:2012-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:奈米金氧化鋅染料敏化太陽能電池
外文關鍵詞:Dye-sensitized sorlar cellsZinc OxideGold nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文為在染料敏化太陽能電池氧化鋅工作電極中加入Au 奈米粒子,探討不同合成Au/ZnO方式與 Au 粒子的粒徑大小對染敏電池效率的影響。依製程 Au/ZnO 方式不同而分成兩部分:第一部分中,首先用傳統的方法- Turkevich method合成出Au奈米粒子,此方法為利用四氯金酸做為奈米金粒子之前驅物, 檸檬酸鈉作為還原劑,製備出平均粒徑16 nm 的Au奈米粒子。接著用吸附的方式使Au奈米粒子吸附在ZnO表面上,製程 Au/ZnO 粉末,進而製程電池量測效率。實驗結果顯示,加入不同奈米金水溶液的體積會影響到整體光電轉換效率的高低,在膜厚為 16 μm時,可將光電轉換效率從純 ZnO 2.19% 提升至2.73%。
第二部分,利用還原的方式,將Au 奈米粒子直接還原在ZnO表面上,探討不同Au粒子粒徑大小與ZnO浸泡於四氯金酸水溶液前驅物下時間對光電轉換效率的影響。在Au粒子粒徑5 nm ,浸泡時間30分鐘之下,膜厚21 μm時,短路電流密度 (short-circuit current density ) 可從4.71 mA/cm2提升至 7.39 mA/cm2,光電轉換效率從2.19 % 提升至3.49 %。推究其原因可能是Au 奈米粒子產生的表面電漿共振效應會使染敏電池中工作電極光吸收範圍擴大,使得光子轉換成電子的效率提升,進而達到提升效率的目的。


Working electrodes for dye-sensitized solar cells (DSSCs) were fabricated with commercial ZnO nanoparticles using low-temperature process. The sensitizing dye used here was N719. The effects of ZnO film thickness and gold nanosphere incorporation on solar cell efficiency were investigated. In the first part, The gold nanospheres were synthesized by classical citrate reduction method (Turkevich method) ,which is reducing of hydrogen tetrachloroaurate (HAuCl4) by sodium citrate, and had an average size of 16 nm. We use the way to nanospheres adsorption on ZnO surface. The results show that the power conversion efficiency could be enhanced by the incorporation of gold nanospheres with proper volume in the ZnO-based photoelectrode. At a film thickness of 16 μm, the addition of gold nanospheres boosted the conversion efficiency from 2.19% to 2.73%. The second part, We use another method to gold nanospheres direct reduction on ZnO. This study enhanced power conversion efficiency with 5 nm size of gold nanospheres and time immersing hydrogen tetrachloroaurate precursors from 2.19% to 3.49% at film thickness of 21 μm. The observed increase in conversion efficiency could be attributed mainly to a significant rise in short-circuit current density (Jsc), which was probably the result of enhanced optical absorption in visible range produced by the surface plasmom resonance of gold nanospheres.


目錄
摘 要 i
ABSTRACT ii
誌 謝 iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2 研究動機 4
第二章 文獻回顧 5
2.1太陽能電池介紹 5
2.2 染料敏化太陽能電池(DSCs) 8
2.2.1 DSCs發展及演進 8
2.2.2 DSCs工作原理 10
2.2.3 DSCs結構 13
2.2.3.1 透明導電玻璃 13
2.2.3.2 工作電極 14
2.2.3.3 染料光敏化劑 16
2.2.3.4 氧化還原電解質 18
2.2.3.5 對電極 (陰極) 19
2.2.4 DSCs之光電特性測量 20
2.2.5 電化學交流阻抗分析 23
2.2.6 入射單色光子-電子轉換效率 24
2.2.7 氧化鋅與其應用於DSCs 25
2.2.7.1 氧化鋅結構 25
2.2.7.2 氧化鋅的合成與應用 26
2.2.7.3 氧化鋅應用於DSCs 27
2.3 奈米粒子 30
2.3.1 奈米粒子的介紹 30
2.3.2 奈米粒子的效應 31
2.3.2.1 表面效應 ( Surface Effect ) 31
2.3.2.2 量子尺寸效應 ( Quantum Effect ) 33
2.3.2.3 量子穿遂效應 ( Quantum Effect ) 34
2.3.3 奈米粒子的合成 34
2.3.3.1 物理氣相沉積 35
2.3.3.2 雷射削熔法 36
2.3.3.3 氧化還原法 37
2.3.4 奈米金粒子 39
2.3.4.1 奈米金粒子的特性簡介 39
2.3.4.2 表面電漿共振 40
2.3.5 金奈米粒子應用於DSCs 44
第三章 實驗步驟與分析方法 47
3.1 實驗藥品與一般儀器 47
3.1.1 實驗藥品 47
3.1.2 一般儀器 48
3.2 鑑定儀器及測試方法 49
3.2.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 49
3.2.2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 49
3.2.3微小狀測定儀 (Surface Profiler) 49
3.2.4 紫外光-可見光光譜儀(UV-Vis Spectrophotometer) 49
3.2.5 太陽能電池效率量測系統 (Solar cell Efficiency Mesurement System) 50
3.2.6 入射單色光子-電子轉換效率儀 (IPCE) 51
3.3 實驗步驟及方法 52
3.3.1 實驗架構圖 52
3.3.2 吸附製程 Au/ZnO 薄膜工作電極 53
3.3.3 還原製程 Au/ZnO 薄膜工作電極 55
3.4 染料敏化太陽能電池元件組裝 57
3.4.1 電池元件封裝流程圖 57
3.4.2 工作電極清洗與製備 58
3.4.3 染料溶液與電解液的配製 58
3.4.4 對電極製備 58
3.4.5 電池元件封裝 58
第四章 結果與討論 60
4.1氧化鋅顆粒 60
4.1.1 氧化鋅顆粒之表面型態 61
4.1.2 氧化鋅不同膜後對元件效率的影響 61
4.2吸附法製備Au/ZnO 63
4.2.1 金奈米粒子之分析 63
4.2.2 Au/ZnO之表面型態 65
4.2.3 金奈米粒子溶液體積與紫外光-可見光 (UV-Vis) 吸收光譜之關係 68
4.2.4 金奈米粒子溶液體積與Au/ZnO薄膜元件效率之關係 69
4.2.5 最佳體積金奈米水溶液Au/ZnO薄膜之不同膜厚元件效率的關係 71
4.2.6 Au/ZnO薄膜於IPCE之分析 74
4.3還原法製備 Au/ZnO 75
4.3.1 Au/ZnO薄膜之表面形態 75
4.3.2 浸泡HAuCl4(aq)時間與紫外光-可見光吸收光譜之關係 78
4.3.3 浸泡還原HAuCl4(aq)時間與Au/ZnO薄膜元件效率之關係 80
4.3.4 最佳浸泡HAuCl4(aq)時間之Au/ZnO薄膜不同膜厚元件效率 85
4.3.5 Au/ZnO薄膜IPCE之分析 88
第五章 結論 91
參考文獻 93


參考文獻
1. http://zh.wikipedia.org/zh-tw/
2. http://210.69.121.54/moea/Docs/index.html, 經濟部太陽光電示範系統網.
3. 工業雜誌 192 期.
4. 呂宗昕,圖解奈米科技與光觸媒,商周出版社
5. 曾致翔,合成金-二氧化鈦核-殼奈米粒子,碩士論文,國立臺北科技大學, 2011
6. M. P. Faraday, Trans. R. Soc. London, 1857, 147.
7. 王釿鋊,染料半導體光電池,中技社通訊,2002,41,5
8. 查丁壬彙編,認識太陽能電池,中華太陽能聯誼會,2003
9. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables” , Prog. Photovolt: Res. Appl., 19, 2011, 84-92.
10.A. Luque, S. Heghdus, “Handbook of Photovoltaic Science and Engineering”, Inc Net Library, 2003.
11.王釿鋊,淺談薄膜式光電池,中技社通訊,2005,59,6-9
12.F. Lurd, R. Livingston, ” The Quantum Yields of Some Dye-Sensitized Photooxidation.” J. Phys. Chem., 44, 1940, 865
13.D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, P. Radlick,”Evidence for the Participation of 1Σg + 1Δg Oxygen in Dye-Sensitized Photooxygenation Reactions”, J. Am. Chem. Soc., 89, 1967, 5456.
14.H. Tsubomura, M. Matsumarm, Nomuray, T. Amamiya, “Dye sensitized Zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, 1976, 402.
15.A. Hagfeldt and M. Gratzel, “Molecular photovoltaics”, Acc. Chem. Res., 33, 2000, 269-277.
16.M. Gratzel, “nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobiol. A, 2004, 164, 3-14.
17.M. Gratzel, 2000. ; Nazeeruddin, 2001.
18.A.Yella, H. W. Lee, H. N. Tsao, M. Gratzel, ” Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte”, Science, 334, 2011, 629-633.
19.李佳華, “染料敏化太陽能電池工業化國際會議紀要(上)”, 工業材料四月刊, 292, 2011, 94-99.
20.Nazeeruddin, 2003.
21.M. Gratzel, “Applied physics: Solar cells to dye for”, Nature, 421, 2003, 586-587.
22.D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2000, 2053-2059.
23.M. Weng, Dye-sensitized solar cells. 工業技術研究院簡報, 2009.
24.M. Gratzel, Nature, 414, 2001, 338
25.A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechnisms, and Selected Results”, Chem. Rev., 95, 1995, 735-758.
26.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemenn,”Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., 95, 1995, 69-96.
27.M. Gatzel, Nature, 414, 2001, 338.
28.林義成, “Solar Cell Introduction” 彰化師範大學機電系/顯示所,2005.
29.W. Peng, M. Z. Shaik , C. Pascal,C. Raphael, H. B. Robin, G. Michael, ”Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals.” J. Phys. Chem. B, 107, 2003, 14336-14341.
30.X. Fang, T. Ma, G. Guan, M. Akiyama,T. Kida, E. Abe, “Effect of the thickness of the Pt film coated on a counter electrodeon the performance of a dye-sensitized solar cell”, J. Electroceram, 570, 2004, 257-263.
31.www.newport.com
32.W. Feifei, L. Ruibin, P. Anlian, C. Li, C. Ke, X. Bofei, W. Geng, M. Qingbo, L. Jinghong, L. Qi, W. Yanguo, W. Taihong, Z. Bingsuo, Materials Letters, 61, 2007, 2000–2003.
33.J. van de Lagemaat, N.-G. Park, A. J. Frank, J. Phys. Chem. B, “Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Eletrical Impedance and Optical Modulation Techniques”, 104, 2000, 2044-2052.
34.A. Motonari, S. Masaru, J. Jinting, O. Yukio and I. Seiji, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy.” J. Phys. Chem. B, 110, 2006, 13872-13880.
35.J. Phys. Condens. Matter, 16, 2004, 829–858.
36.M. Gratzel, K. Kalyanasundaram, “Artificial photosynthesis : Efficient dye-sensitized photoeletrochemical cells for direct conversion of visible light to electricity”, Curr. SCi. 66, 1994, 706-714.
37.M. Law, H. Kind, B. Messer, F. Kim, P. Yang, ”Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature”, Chem. Int. Ed., 41, 2002, 2405.
38.Z. Qifeng, C. S. Dandeneau, Z. Xiaoyuan, C. Guozhong,”ZnO Nanostructures for Dye-sensitized Solar Cells”, Adv. Mater, 21, 2009, 4087-4108.
39.R.P. Feynman, There''s Plenty of Room at the Bottom, California Institute of Technology, Richard P. Feynman, 1959
40.D. M. Eigler, E. K. Schweizer, Nature, 344, 1990, 524.
41.科學發展期刊 354 期.
42.M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, "Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide", Chem. Mater., 2002, 1974.
43.林鴻明、林中魁, 奈米科技應用研究與展望. 工業材料, 90 年 11 月. 179, 84-91.
44.F. Mafune, J.-y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, "Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant", The Journal of Physical Chemistry B, 105, 2001, 5114
45.H. Bonnemann, Ryan M. Richards, "Nanoscopic Metal Particles − Synthetic Methods and Potential Applications", European Journal of Inorganic Chemistry , 2001, 2001, 2455.
46.V. Subramanisn, E. E. Wolf, P. V. Kamat, “Catalysis with TiO2/Gold nanocomposites effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc., 126, 2004, 4943.
47.Y. Xia, N. J. Halas, Mat. Res. Soc., 30, 2005, 338.
48.張立德、牟季美,奈米材料和奈米構,滄海書局,2002.
49.何符漢、蔡定平、劉威志, 表面電漿子理論與模擬,物理雙月刊, (4) 24, 2002, 558.
50.K. A. Willets, R. P. Van Duyne,”Loalized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., 58, 2007, 267-297.
51.Papavassiliou, G.C., "Optical-Properties of Small Inorganic and Organic Metal Particles." Progress in Solid State Chemistry, 12, 1979, 185-271.
52.Link, S.E.-S., M. A., "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles”, Journal of Physical Chemistry B, 103(21), 1999, 4212-4217.
53.V. Dhas, S. Muduli, W. Lee, S. H. Han, O. Satishchandra,”Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nonaflowers loaded wit gold nanoparticles”, Appl Physics Letters, 93, 2008, 243108.
54.Z. H. Chen, J . Phys . Chem . C, “Vertically Aligned ZnO Nanonod Arrays Sensitized with gold Nanoparticlesfor Schottky Barrier photovoltaic Cells”, 113, 2009, 13433-13437.
55.W. Xin, K. Xianggui, Y. Yi, Z. Hong, J. Phys. Chen. C, 111, 2007, 3836-3841.
56.楊素卿,利用離心法製作金奈米顆粒薄膜探討其形成與顆粒間交互作用的關係,碩士論文,國立東華大學,2010


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top