跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宛霖
研究生(外文):Wan-Lin Lin
論文名稱:2-胺基丙二醇改質酯型聚胺酯/多壁奈米碳管複合材料製備鑑定及生 物相容性
論文名稱(外文):Preparation, Characterization and Biocompatibility of the Serinol-modified Polyurethane(Ester-typed)/Multi-walled Carbon Nanotube Composites
指導教授:王賢達王賢達引用關係
口試委員:楊正昌黃豪銘
口試日期:2012-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:聚胺酯奈米碳管複合材料生物相容性
外文關鍵詞:PolyurethaneCarbon nanotubeCompositeBiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗中由聚己內酯二醇(PCL)和4,4’-二苯甲烷二異氰酸鹽(MDI)以莫耳比1:2先形成前驅物,再以含保護基的2-胺基丙二醇(N-BOC-serinol)及1,4-丁二醇(1,4-butanediol)鏈延長劑進行延長反應得到改質酯型聚胺基甲酸酯(聚胺酯,PU)。改質PU去保護基BOC後再和含COCl官能基的改質多壁奈米碳管(MWNTs)反應,形成化學鍵結的複合材料(PU/MWNTs)。

改質奈米碳管以FTIR鑑定結構,以粒徑分析儀測試改質奈米碳管的粒徑大小變化。改質聚胺酯及複合材料的合成是否成功,以1H-NMR鑑定,改質聚胺酯之光譜應顯示N-BOC-serinol之吸收峰,複合材料之光譜顯示-NH-吸收峰信號,由此判斷。

熱分析結果,由TGA結果顯示,添加適量的奈米碳管能有效改善聚胺酯的Td (5%熱裂解溫度),最高多可以提高約61℃。DSC數據顯示,隨著添加改質奈米碳(ClMWNTs)的比例增加,玻璃轉移溫度(Tg)會先下降後上升。接觸角測試結果,隨奈米碳管添加量的增加,複合材料的接觸角度有下降趨勢。表面電阻結果顯示,隨著奈米碳管的添加,複合材料的表面電阻逐漸下降。拉伸強度隨奈米碳管的加入會先上升後下降,斷裂延伸率則會下降,而楊氏模數會隨著增加。全血凝固動力實驗及血液凝結分析(APTT&PT)測試各樣品的生物相容性,結果顯示隨奈米碳管添加量的增加,抗凝血能力提升。由以上結果,改質奈米碳管能改善聚胺酯各種性質。


Here, we report a method to modify and improve the property of polyurethane (PU). Poly(caprolactone)diol (PCL) and 4,4’- diphenylmethane diisocyanide(MDI) with 1:2 molar ratio have been used for the synthesis of prepolymers. The resulting prepolymers were chain-extended by N-BOC-serinol to obtain the modified PU . Afterwards, BOC group of serinol in PU was de-protected. Finally, multi-walled carbon nanotubes (MWNTs) containing COCl groups were added to form composites
(PU/MWNTs).

The TGA data showed that the Td (temperature of 5%wt degradation) improved with the addition of proper amount of MWNTs. The DSC results indicated that the Tg reached a minimum depending on the MWNTs content, and the composition of the PU/MWNTs. The PU/MWNTs film was found more hydrophilic and decreased in surface electic resistivity with the addition of MWNTs. The breaking tensile strength of PU/MWNTs was also dependent on the MWNTs content and the composite composition. Young’s modulus increased and the elongation at break decreased upon introducing MWNTs into PU. Whole blood clotting test and blood coagulation measurements (APTT and PT) exhibited that the anti-coagulant property of PU improved with the incorporation of the MWNTs.


目 錄

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 1
1.3 研究方法 2
第二章 文獻回顧 3
2.1 聚胺酯 3
2.1.1 聚胺酯簡介 3
2.1.2 聚胺酯製備 4
2.2 奈米碳管 6
2.2.1 奈米碳管簡介 6
2.2.2 奈米碳管的改質 7
2.3 奈米碳管/聚胺酯複合材料相關報告 9
第三章 實驗 16
3.1 藥品 16
3.2 藥品前處理 21
3.3 實驗器材 22
3.4 檢測儀器及方法 24
3.4.1 傅立葉轉換紅外線光譜儀(FTIR) 24
3.4.2 核磁共振儀(NMR) 25
3.4.3 凝膠滲透層析儀(GPC) 26
3.4.4 熱重損失分析儀(TGA) 27
3.4.5 示差掃描熱分析儀(DSC) 28
3.4.6 粒徑分析儀 29
3.4.7 萬能材料測試機 30
3.4.8 靜態接觸角測量儀 31
3.4.9 超絕緣儀 32
3.4.10 全血凝固動力試驗 33
3.4.11 血液凝固之分析 34
3.5 製備複合材料 36
3.5.1 酯型聚胺酯合程 36
3.5.2 改質酯型聚胺酯合程 36
3.5.3 奈米碳管改質 37
3.5.4 改質酯型聚胺酯的活化 38
3.5.5 改質聚胺酯/奈米碳管複合材料之製備 38
第四章 結果與討論 40
4.1 奈米碳管改質鑑定 40
4.1.1 粒徑分析 40
4.1.2 FTIR光譜分析 40
4.2 改質聚胺酯/奈米碳管複合材料之鑑定 42
4.2.1 FTIR光譜分析 42
4.2.2 1H-NMR光譜分析 45
4.2.3 GPC分析 48
4.2.4 TGA分析 49
4.2.5 DSC分析 51
4.2.6 機械性質分析 53
4.2.7 接觸角分析 57
4.2.8 表面電阻測試 59
4.3 改質聚胺酯/複合材料生物相容性 61
4.3.1 全血凝固動力實驗 61
4.3.2 血液凝血分析 62
第五章 結論 63
參考文獻 64
附錄
A 奈米碳管粒徑分析圖 69
B FTIR光譜圖 72
C 聚胺酯、改質聚胺酯、活化改質聚胺酯及複合材料之1H-NMR
圖譜 75
D 聚胺酯、改質聚胺酯及複合材料GPC 78
E 聚胺酯、改質聚胺酯及複合材料TGA熱分析圖 82
F 聚胺酯、改質聚胺酯及複合材料DSC熱分析圖 89
G 聚胺酯、改質聚胺酯及複合材料機械性質數據 96
H 聚胺酯、改質聚胺酯及改質聚胺酯接觸角數據 99
I 聚胺酯、改質聚胺酯及改質聚胺酯表面電阻數據 101
J 聚胺酯、改質聚胺酯及複合材料全血凝固動力實驗數據 103
K 聚胺酯、改質聚胺酯及複合材料血液凝固分析實驗數據……….106


[1] M. M. Treacy, T. W. Ebessen, J. M. Gibson, “Exceptionally high Young’s modulus
observed for individual carbon nanotubes”, Nature, vol.381, 1996 ,pp.678-680
[2] T. W. Ebbessen, ”Carbon nanotubes”, Annual Review of Materials Science,
vol.24, 1994, pp.235-264
[3] W. Tang, M. H. Santare, S. G. Advani, ” Melt processing and mechanical property
characterization of multi-walled carbon nanotube/ high density polyethylene
(MWNT/HDPE) composite films”, Carbon, vol.41, 2003, pp.2779 -2785
[4] T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, W. D. Zhang, ” Morphology and
mechanical properties of multiwalled carbon nanotubes reinforced nylon-6
composites”, Macromolecules, vol.37, 2004, pp.7214-7222
[5] J. C. Smith, M. C. Davier, C. D. Melia, S. P. Denyer, M. R. Derrick, “Uptake of
drugs by catheters: the influence of the drug molecule on sorption by polyurethane
catheters”, Biomaterials, vol.17, 1996, pp.1469-1472
[6] K. A. Woodhouse, P. Klement, V. Chen, M. B. Gorbet, F. W. Keeley, R. Stahl,
“Investigation of recombinant human elastin polypeptides as non-thrombogenic
coatings”, Biomaterials, vol.25, 2004, pp.4543-4553
[7] M. T. Khorasani, S. Shorgashti, ” Fabrication of microporous thermoplastic
polyurethane for use as small-diameter vascular graft material. I. Phase-inversion
method”, Journal of Biomedical Materials Research Part B: Applied Biomaterials,
vol.76B, 2006, pp.41-48
[8] I. Alferiev, S. J. Stachelek, Z. B. Lu, A. L. Fu, T. L. Sellaro, J. M. Connolly, ”
Prevention of polyurethane valve cusp calcification with covalently attached
bisphosphonate diethylamino moieties”, Journal of Biomedical Materials
Research PartA, vol.66A, 2003, pp.385-394
[9] M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, H. Dai, ”Functionalization of carbon nanotubes for biocompatibility and biomalecular recognition”, Nano Letters,
2002, vol.2, pp.285-288
[10] J. Rickerby, R. Prabhakar, A. Patel, J. Knowler, S. Brocchini, “A biomedical library of serinol-derived polyesters”, Journal of Controlled Release,
vol.101, 2005, pp.21-34
[11] D. Park, W. Wu, Y. Wang, “A functionalizable reverse thermal gel based on a
polyurethane/PEG block copolymer”, Biomaterials, vol.32, 2011, pp.777-786
[12] 陳奕村,製備與鑑定酯型聚胺酯/改質奈米碳管複合材料,碩士學位,台北
科技大學有機高分子所,台北市,2008
[13] 林紹愉,製備與鑑定醚型聚胺酯/改質奈米碳管複合材料,碩士學位,台北
科技大學有機高分子所,台北市,2008
[14] Y. C. Jung, H. J. Yoo, Y. A. Kim, J. W. Cho, M. Endo, ” Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes”, Carbon,
vol.48, 2010, pp.1598-1603
[15] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, vol.354, 1991,
pp.56-58
[16] S. Iijima, T. Ichihashi, Y. Ando, ”Pentagons,heptagons and negative curvature in
graphite microtubule growth”, Nature, vol.356, 1992, pp.776-778
[17] Y. Chen, R. C. Haddon, ”Chemical attachment of organic functional groups to
single-walled carbon nanotube material”, Journal of Materials Reserch, vol.13,
1998, pp.2423-2431
[18] S. C. Tsang, P. J. F. Harris, M. L. H. Green, ”Thinning and opening of carbon
Nanotubes by oxidation using carbon dioxide”, Nature, vol.362, 1993,
pp.520-522
[19] S. C. Tsang, Y. K. Chen, M. L. H. Green, ”A simple chemical method of opening
and filling carbon nanotubes”, Nature, vol.372, 1994, pp.159-162
[20] Hiura H, Ebbesen TW, Tanigaki K. ” Opening and purification of carbon
nanotubes in high yields”, Advanced Materials, vol.7, 1995, pp.275-276
[21] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu,
T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee,
D. T. Colbert, R. E. Smalley, ”Fullerene pipes”, Science, vol.280, 1998,
pp.1253-1255
[22] E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu,
R. E. Smalley, R. H. Hauge, J. L. Margrave, ” Solvation of Fluorinated
Single-Wall Carbon Nanotubes in Alcohol Solvents”, Journal of Physical
Chemistry B, vol.103, 1999, pp.4318-4322
[23] N. G. Sahoo, Y. C. Jung, H. J. Yoo, J. W. Cho, ” Effect of functionalized carbon
nanotubes on molecular interaction and properties of polyurethane composites”
, Macromolecular Cemistry and Physics, vol.207, 2006, pp1773-1780
[24] W. Chen, X. Tao, Y. Liu, ”Carbon nanotube-reinforced polyurethane composite
fibers”, Composites Science and Technology, vol.66, 2006, pp.3029-3034
[25] J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, X. Wang, ” The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite”, Carbon, vol.44, 2006, pp.2701-2707
[26] H. Xia, M. Song, ”Preparation andcharacterization of polyurethane-carbon nanotube composites”, Soft Matter, vol.1, 2005, pp.386-394
[27] J. Y. Kwon, H. D. Kim, ”Preparation and properties of acid-treated multiwalled
carbon nanotube/waterborne polyurethane nanocomposites”, Journal of Applied
Polymer Science, vol.96, 2005, pp.595-604
[28] W. H. Song, Q. P. Ni, Z. Zheng, L. Y. Tian, X. L. Wang, ” The preparation of
biodegradable polyurethane/carbon nanotube composite based on in situ cross-linking”, Polymers for Advanced Technologies, vol.20, 2009, pp.327-331
[29] Y . C. Jung, N. G. Sahoo, J. W. Cho, ”Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers”, Macromolecular Rapid Communications, vol.27,
2006, pp.126-131
[30] C. C. M. Ma, Y. L. Huang, H. C. Kuan, Y. S. Chiu, ” Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites”, Journal of Polymer Science: Part B: Polymer Physics, vol.43, 2005, pp.345-358
[31] N. G. Sahoo, Y. C. Jung, H. J. Yoo, J. W. Cho, ” Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory
properties of polyurethane nanocomposites”, Composites Science and
Technology, vol.67, 2007, pp.1920-1929
[32] H. C. Kuan, C. C. M. Ma, W.P. Chang, S. M. Yuen, H. H. Wu, T.M. Lee, ” Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite”,Composites Science and Technology, vol.65, 2005, pp.1703-pp.1710
[33] J. Meng, H. Kong, H. Y. Xu, L. Song, C. Y. Wang, S. S. Xie, ” Improving the
blood compatibility of polyurethane using carbon nanotubes as fillers and its
Implications to cardiovascular surgery”, Journal of Biomedical Materials

Research, vol.74A, 2005, pp.208-214
[34] H. Deka, N. Karak, R. D. Kalita, A. K.Buragohain, ”Biocompatible hyperbranched polyurethane/multi-walled carbon nanotubes composites as shape memory materials”, Carbon, vol.48, 2010, pp.2013-2022
[35] 陳睿瑾,化學改質奈米碳管/醚型聚胺酯複合材料合成鑑定及生物相容性,
碩士學位,台北科技大學有機高分子所,台北市,2010


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊