跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張登陽
研究生(外文):Deng-Yang Chang
論文名稱:碳六十衍生物的結構對於高分子太陽能電池之光伏特性質的影響及探討
論文名稱(外文):Effect of structure of fullerene derivatives of the photovoltaic properties on the poly(3-hexylthiophene)-polymer solar cells
指導教授:芮祥鵬芮祥鵬引用關係王立義
指導教授(外文):Syang-Peng RweilLeeyih Wang
口試委員:張淑美
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:高分子太陽能電池富勒烯衍生物
外文關鍵詞:polymer solar cellfullerene derivatives
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要在於探討碳六十衍生物的分子結構於高分子太陽能電池的光伏行為表現。在第一階段的研究,由於高分子太陽能電池通常使用共軛高分子當作電子予體,以C60衍生物作為電子受體,其開環電壓(open-circuit voltage, Voc)主要取決於電子予體的HOMO和電子受體的LUMO的能階差。為了有效提升Voc,往往會在C60上接上推電子基,藉以提升它的LUMO能階,進而加大兩種材料間的能階差。然而,先前的文獻顯示,在C60上接上推電子基,並無法有效地改變其LUMO位置,主要原因是因為取代基與C60鍵結的部分屬於sp3-sp3軌域,電子無法有效的共振進而影響C60的能階。本研究中,我們使用三苯胺(triphenylamine)、咔唑(carbazole)或芴(fluorene)基團的碳六十衍生物為電子受體來製備電池元件。雖然,CV的測量顯示,這兩個分子的LUMO能階仍然相近於PCBM者,但其衍生元件的Voc卻明顯地比PCBM衍生者高。此一結果提供了一個嶄新的途徑來開發高效率高分子太陽能電池。
而在第二階段的研究中,我們發現在吡咯烷碳六十衍生物接上不同強度的推電子和烷基鏈段會誘導產生S型的電壓電流特性圖。經由添加劑(Additive)和P3HT緩衝層的實驗結果,我們發現是碳六十的沉降問題誘導產生S型的電壓電流特性圖,而順著沉降的問題,我們更利用了反式太陽能電池去解決S型電壓電流特性圖。而此結果也提供了我們去設計適用在反式高分子太陽能電池的碳六十衍生物。


In this study, we mainly focus on studying the effect of structure of fullerene derivatives on the photovoltaic performance of polymer solar cells. In the first part, poly(3-hexylthiophene) (P3HT) and C60 derivatives were employed as an electron donor and an electron acceptor, respectively, to fabricate polymer solar cells. It has been established that the open-circuit voltage (Voc) is determined by the difference of the HOMO level of the donor and the LUMO level of the acceptor, and the up-shift of the acceptor''s LUMO can potentially raise the Voc. Although chemically grafting electron donating groups on the C60 cage may enrich the electron density of C60 core and thereby increase the LUMO, the sp3-sp3 orbital of the bridged carbon significantly blocks the resonance of electron from the electron-rich substituent to C60, leading to a minor effect on the LUMO. In this research, new fullerene derivatives bearing triphenylamine, carbazole or fluorine moiety were utilized as the acceptor of P3HT to prepare bulk-heterojunction solar devices. The cyclic voltammetry measurements show these fullerene derivatives have a similar LUMO as that of PCBM. However, the Voc of the devices based on these acceptors is much higher than that of the device based on PCBM. This finding provides a new avenue to design next-generation C60-derived acceptor for the development of high-Voc polymer solar cells.
In the second part, the use of fulleropyrrolidine derivatives bearing electron donating moieties as an acceptor in P3HT-based solar cells results in unfavorable S-shaped current density-voltage (J-V) curves. With the aid of processing additive and the introduction of a P3HT film as a buffer layer, the fill factor can be greatly improved. Especially, the inverted solar devices using the above fullerene derivatives as an acceptor exhibit normal J-V curves with high fill factor and outstanding power conversion efficiency. These observations suggest these fullerene adducts may form molecular aggregation that induce vertically inhomogeneous distribution of these compounds, and they can be adapted as effective acceptor materials for inverted polymer solar cells.


中文摘要 i
英文摘要 ii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池之種類 2
1.3 高分子太陽能電池 4
1.4 元件的性能與參數 13
第二章 文獻回顧與近況發展 16
2.1異質接面之形態控制 16
2.2垂直方向之相分離變化 16
2.3 添加假效應 21
2.4 低能隙共軛高分子 26
2.5 碳六十衍生物 32
2.6 主動層和陰極之間的夾層(Interlayer) 36
第三章 實驗 40
3.1 實驗儀器設備 40
3.2 實驗藥品 42
3.3 元件製備 45
第四章 帶有咔唑和芴的碳六十衍生物之高開環電壓太陽能電池 50
4.1 前言與研究動機 50
4.2 結果與討論 56
4.3 電荷轉移之驗證 67
4.4 結論 72
第五章 富勒烯吡咯烷分子結構於高分子太陽能電池光伏行為探討 73
5.1 前言與研究動機 73
5.2 結果與討論 76
5.3 不同烷基鏈段對於碳六十衍生物之聚集行為探討 93
5.4 S-Shape I-V curve之電性分析 101
5.5 結論 109
第六章 總結與未來展望 110
參考文獻 111


[1] www://www.nrel.gov/
[2] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.
[4] N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
[5] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
[6] K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533.
[7] S. Gu‥nes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
[8] S.S. Sun, Sol. Energy Mater. Sol. cells 2003, 79, 257.
[9] Letian Dou, Jingbi You, Chun-Chao Chen and Yang Yang, Nature Photonic. 2012,
[10] B. Kippelen, J. Bredas, Energy Environ Sci. 2009, 2, 251.
[11] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Appl. Phys. Lett. 2002, 80, 1288.
[12] G. Dennler,M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
[13] S. Goffri, C. Mu‥ller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J. W. Andreasen, R. Thompson, R. A. J. Janssen, M. M. Nielsen, P. Smith, H. Sirringhaus, Nat. Mater. 2006, 5, 950.
[14] Qingshuo Wei, Takeshi Nishizawa, Keisuke Tajima and Hashimoto, Adv. Mater. 2008, 20, 2211.
[15] Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
[16] C.Y. Chang, C.E. Wu, S.Y. Chen, C C, Yen-Ju Cheng, Chain-Shu Hsu, Angew. Chem. Int. Ed. 2011, 50, 9386.
[17] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
[18] M.S. Su, C.Y Kuo, M.C Yuan,U-Ser Jeng, Chun-Jen Su and Kung-Hwa Wei, Adv. Mater. 2011, 23, 3315.
[19] Xia Guo, Chaohua Gui, Maojie Zhang, Lijun Huo and Yongfang Li, Energy Environ. Sci., 2012, 5, 7943.
[20] Jose M. Lobez, Trisha L. Andrew, Vladimir Bulovic and Timothy M. Swager, ACS Nano, 6, 3044.
[21] C. J. Brabec, C. Winder, N. S. Sariciftci, J. C. Hummelen, A. Dhanabalan, P. A. van Hal, R. A. J. Janssen, Adv. Funct. Mater. 2002, 12, 709.
[22] Yen-Ju Cheng, Sheng-Hsiung Yang and Chain-Shu Hsu, Chem. Rev. 2009, 109, 5868.
[23] H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonic 2009, 3, 649.
[24] L. Huo, S. Zhang, X. Guo, F. Xu, Yongfang Li and Jianhui Hou, Angew. Chem. Int. Ed. 2011, 50, 9697.
[25] Alan T. Yiu, Pierre M. Beaujuge, Clair H. Woo and Jean M. J. Frechet, J. Am. Chem. Soc. 2012, 134, 2180.
[26] L. M. Popescu, P. V. Hof, A. B. Sieval, H. T. Jonkman and J. C Hummelen, Appl. Phys. Lett. 2006, 89, 213507.
[27] Y. Zhang, Hin-Lap Yip, Fei Huang and Alex K.-Y. Jen, Chem. Mater. 2009, 21, 2598.
[28] Y. He, H. Y. Chen, J. Hou, Y. F. Li, J. Am. Chem. Soc. 2010, 132, 1377.
[29] Yen-Ju Cheng, M.H Liao,C.Y. Chang, W.S. Kao, C.E. Wu and Chain-Shu Hsu, Chem. Mater. 2011, 23, 4056.
[30] F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon and J. C. Hummelen, Org. Lett. 2007, 9 551.
[31] M. Lenes, G.. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater. 2008, 20, 2116.
[32] Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu and Yong Cao, Adv. Mater. 2011, 23, 4636.
[33] K. M. O’Malley, C.-Z. Li, H.-L. Yip and A. K.-Y. Jen, Adv. Energy Mater., 2012, 2, 82.
[34] F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, J. C. Hummelen, Org. Lett. 2007, 9, 551.
[35] M. Lenes, G. J. H. Wetzelaer, F. B. Kooist, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, Adv. Mater. 2008, 20, 2116.
[36] R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. V. Keuren, B. C. Holloway, M. Drees, Nat. Mater. 2009, 8, 208.
[37] C.L Chang, C.W. Liang, Leeyih Wang, Man-kit Leung, Solar Energy Material & Solar Cells, 95, 2011,2371
[38] Tracey M. Clarke and James R. Durrant, Chem Rev. 2010, 110, 6736
[39] P. A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu, M. A. E. Goryachev, A. S. Peregudov, R. N. Lyubovskaya, G.Gobsch, N. S. Sariciftci, V. F. Razumov, Adv. Funct. Mater., 2009, 19, 779.
[40] Chin-Wei Liang and Leeyih Wang, Appl. Phys. Lett. 95, 133303(2009)
[41] Hui Jin, Markus Tuomikoski, Jussi Hiltunen,Arto Maaninen and Flavio Pino, J. Phys. Chem. C. 2009, 113, 16807.
[42] M. Vogel, S. Doka, Ch. Breyer, M. Ch. Lux-Steiner and K. Fostiropoulos, Appl. Phys. Lett. 89, 163501 (2006)
[43] N. Cho, Hin-Lap Yip, Steven K Hau and Alex K.-Y. Jen, J. Mater. Chem, 2011, 21, 6956.
[44] Ankit Kumar, Srinivas Sista and Yang Yang, J. Appl. Phys. 105, 094512 (2009).
[45] J.C. Wang, X.C. Ren, S.Q. Shi, C.W. Leung, Paddy K.L. Chan, Organic Electronics 12 (2011), 880.
[46] C.M. Amb, S. Chen, K. R. Graham, and John R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊