跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾雅怡
研究生(外文):Ya-Yi Tseng
論文名稱:鈀催化膦酸二乙酯進行Mizoroki-Heck Type反應及CuO/ZnO催化三成份之耦合反應
論文名稱(外文):Palladium-catalyzed Mizoroki-Heck Type Reaction of Diethyl Phosphonates and CuO/ZnO-catalyzed Three Component Coupling Reaction
指導教授:蔡福裕
指導教授(外文):Fu-Yu Tsai
口試委員:吳學亮王朝諺
口試委員(外文):Hsyueh-Liang WuTiow-Gan Ong
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:147
中文關鍵詞:水溶性鈀觸媒Mizoroki–Heck type反應膦酸二乙酯異相催化氧化銅三成分耦合
外文關鍵詞:Water soluble catalystMizoroki–Heck type reactionDiethyl phosphonateHeterogeneous catalysisThree component coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文由兩部分組成。在第一部分我們以鈀/陽離子性2,2’-雙呲啶組成觸媒系統,用來催化芳香羥硼酸與膦酸二乙酯在水中與空氣下進行Mizoroki–Heck type反應。第二部分則是以負載於氧化鋅的氧化銅奈米顆粒為異相觸媒,用以催化三種成份的耦合反應產生丙炔胺的衍生物。
我們結合了PdCl2(NH3)2與陽離子性2,2’-雙呲啶為觸媒,催化芳香羥硼酸與乙烯基膦酸二乙酯或丙烯基膦酸二乙酯進行反應,產生一系列的Mizoroki–Heck type反應的產物。此反應有不錯的產率、很高的產物選擇性並且可在水中、空氣下進行反應,是一種對環境友善的操作。
另一方面,我們也用簡單的合成手法製備負載於氧化鋅上的氧化銅奈米顆粒,並以此為異相觸媒用來催化炔、醛及胺的耦合反應以產生丙炔胺的衍生物。此CuO/ZnO觸媒顯示相當高的催化效率,我們可以0.01 mol%的催化量在提升反應物的量到70 mmol的條件下來大量製備丙炔胺的衍生物。反應結束後只要以離心的方式就可將此異相觸媒回收並且再使用數次,再使用的實驗顯示觸媒的活性僅有些許下降。


This thesis is composed of two parts. The first part is the palladium/cationic 2,2’-bipyridyl system catalyzed Mizoroki–Heck type reaction of arylboronic acids and diethyl phosphonates in water under air and the second part is the three component coupling reaction for the formation of propargyl amines catalyzed by ZnO supported CuO nanoparticle.
We combine PdCl2(NH3)2 with cationic 2,2’-bipyridyl ligand as a catalytic system to catalyzed the coupling of arylboronic acids with diethyl vinylphosphonates or diethyl allylphosphonates resulting in the formation of corresponding Mizoroki–Heck type products. The reaction is high-yielding and high selectivity and can be performed in water under air, rendering it an environmentally-benign procedure.
On the other hand, a ZnO supported CuO nanoparticle catalyst is prepared by simple procedure and can be applied as a heterogeneous catalyst for the coupling of alkyne, aldehyde, and amine leading to the formation of propargyl amine. The CuO/ZnO catalyst shows highly efficient for this three component coupling and the catalyst loading can be reduce to 0.01 mol% by up the scale to 70 mmol. After reaction, the catalyst can be recovered by simple centrifugation and reused for several times with only slight loss of it activity.


目錄
中文摘要............................................................I
英文摘要...........................................................II
謝誌...............................................................IV
圖目錄............................................................IX
表目錄............................................................XII
第一章 緒論.......................................................1
1.1 Mizoroki-Heck reaction之相關研究.............................1
1.1.1 在水中進行之 Mizoroki-Heck reaction.....................5
1.1.2 Mizoroki−Heck Type Reaction 之相關研究..................8
1.1.3 有機金屬化合物進行 Mizoroki−Heck Type Reaction..........9
1.1.4 以活化C−H鍵來進行 Mizoroki−Heck Type Reaction.......20
1.2 過渡金屬催化生成Propargylamine之反應.......................22
1.2.1 Propargylamine衍生物之簡介...........................22
1.2.2 Propargylamines 相關反應之研究........................24
1.2.2.1 Silver-catalyzed three-component reaction...........24
1.2.2.2 Gold-catalyzed three-component reaction............28
1.2.2.3 Copper-catalyzed three-component reaction..........33
1.2.2.4 Znic-catalyzed three-component reaction..............37
1.2.2.5 Other transition metal-catalyzed three-component reaction39
1.3 研究動機..................................................44
第二章 實驗部分..................................................45
2.1 實驗儀器..................................................45
2.1.1 氣相層析儀 (Gas Chromatograph, GC)....................45
2.1.2 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy NMR) ...............................................45
2.1.3 元素分析 (Elemental Analysis)..........................46
2.1.4 高解析質譜儀 (High Resolution Mass)....................46
2.1.5 感應耦合電漿質譜儀 (ICP-MS).........................46
2.2 實驗藥品..................................................46
2.3 實驗過程..................................................46
2.4 實驗步驟與光譜數據........................................47
2.4.1 親水性配位基之製備與譜..............................47
2.4.1.1 4,4’-bis (bromomethyl)-2,2’-bipyridine 的合成步驟....47
2.4.1.2 合成 4,4’-dicarboxyl-2,2’-bipyridine................47
2.4.1.3 合成4,4’-dimethoxycarbonyl-2,2’-bipyridine..........48
2.4.1.4 合成 4,4’-bis(hydroxymethyl)-2,2’-bipyridine.........48
2.4.1.5 合成4,4’-bis(bromomethyl)-2,2’-bipyridine...........49
2.4.1.6 Cationic 2,2’-bipyridine的製備及光譜數據...........49
2.5 催化反應之實驗步驟與光譜...................................50
2.5.1 Vinylphosphonic acid diethyl ester合成步驟與光譜...........50
2.5.2 Allylphosphonic acid diethyl ester合成步驟與光譜...........56
2.5.3 Allyl-phosphonic acid diethyl ester合成步驟與光譜..........61
2.6 CuO/ZnO催化三成份耦合反應實驗步驟........................68
2.6.1 催化劑 CuO/ZnO (Plate) 之合成........................68
2.6.2 催化劑 ZnO 之合成...................................68
2.6.3 CuO/ZnO催化三成份耦合反應..........................68
2.6.4 CuO/ZnO催化三成份耦合反應之觸媒再使用實驗步驟.......78
第三章 實驗結果與討論..............................................79
3.1 Mizoroki–Heck type reaction..................................79
3.1.1 在水溶性鈀觸媒系統反應之結果與論....................79
3.1.2 催化Aryl boronic acids與Diethyl vinyl phosphonate反應之結果
與討論.............................................81
3.1.3 催化Aryl boronic acids與Diethyl allyl phosphonate反應之結果
與討論.............................................84
3.1.4 催化aryl boronic acids與but-2-enyl-phosphonic acid diethyl ester 反應之結果與討論...................................88
3.1.5 反應機討論..........................................92
3.2 Mannish Reaction............................................94
3.2.1 CuO/ZnO進行A3反應之條件最適化......................94
3.2.2 催化 Cyclohexanealdehyde 與各種 Amine、Terminal alkyne
之結果與討論.........................................96
3.2.3 催化 formaldehyde 與各種 amine、terminal alkyne 之結果與討論..................................................99
3.2.4 催化 pentanal 與各種 amine、terminal alkyne 之結果與討論.102
3.2.5 催化other aldehyde與各種amine、terminal alkyne之結果與討論..................................................104
3.2.6 觸媒再使用活性測試.................................106
3.2.7 催化比例改變之影響.................................108
3.2.8 反應機制討論.......................................111
第四章 結論.......................................................112
參考文獻..........................................................114
附錄..............................................................117


參考文獻
[1] Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119.
[2] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[3] Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166.
[4] Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 508.
[5] Heck, R. F.; Nolley Jr., J. P. J. Org. Chem. 1972, 37, 2320.
[6] Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
[7] Hegedus, L. S. Transition Metal in the Synthesis of Complex Organic Molecules, University Science Books: Mill Valley, CA, 1994, pp. 87.
[8] Bumagin, N. A.; More, P. G.; Beletskaya, I. P. J. Organomet. Chem. 1989, 371, 397.
[9] Botella, L.; Najera, C. Tetrahedron 2004, 60, 5563.
[10] Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225.
[11] de Vasher, R. B.; Moore, L. R.; Shaughnessy, K. H. J. Org. Chem. 2004, 69, 7919.
[12] Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. Tetrahedron 2004, 60, 4097.
[13] Huang, S.-H.; Chen, J.-R.; Tsai, F.-Y. Molecules 2010, 15, 315.
[14] Karimi, B.; Behzadnia, H.; Elhamifar, D.; Akhavan, P. F.; Esfahani, F. K.; Zamani, A. Synthesis 2010, 1399.
[15] Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85.
[16] Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A. Org. Lett. 2001, 3, 3313.
[17] Jung, Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K. W. Org. Lett. 2003, 5, 2231.
[18] Kabalka, G. W.; Guchhait, S. K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.
[19] Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 729.
[20] Kabalka, G. W.; Guchhait, S. K. Org. Lett. 2003, 5, 4129.
[21] Yoon, C. H.; Yoo, K. S.; Yi, S. W.; Mishra, R. K.; Jung, K. W. Org. Lett. 2004, 6, 4037.
[22] Andappan, M. M. S.; Nilsson, P.; Larhed, M. Chem. Commun. 2004, 218.
[23] Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O’Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933.
[24] Molina, M. T.; Navarro, C.; Moreno, A.; Csaky, G. Org. Lett. 2009, 11, 4938.
[25] 黃紹峴 國立臺北科技大學博士論文 2011年
[26] Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.
[27] Amengual, R.; Michelet, V.; Genet, J.-P. Tetrahedron Lett. 2002, 43, 5905.
[28] Martinez, R.; Voica, F.; Genet, J.-P.; Darses, S. Org. Lett. 2007, 9, 3213.
[29] Leng, Y.; Yang, F.; Wei, K.; Wu, Y. Tetrahedron 2010, 66, 1244.
[30] Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 13981.
[31] Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692.
[32] Tsuji, J.; Nagashima, H. Tetrahedron 1984, 40, 2699.
[33] Jia, C.; Lu, W.; Kiyamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097.
[34] Fujiwara, Y.; Moritani, I.; Matsuda, M.; Teranishi, S. Tetrahedron Lett. 1968, 9, 3863.
[35] Shue, R. S. J. Chem. Soc., Chem. Commun. 1971, 1510.
[36] Wei, C.; Li, Z.; Li, C.-J. Synlett 2004, 1472.
[37] Gallagher, D. A.; Schrag, A. CNS Drugs 2008, 22, 563.
[38] Yoo, W.-J.; Zhao, L.; Li, C.-J. Aldrichimica Acta 2011, 44, 43.
[39] Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473.
[40] Li, Z.; Wei, C.; Chen, L.; Varma, R. S.; Li, C.-J. Tetrahedron Lett. 2004, 45, 2443.
[41] Li, P.; Wang, L.; Zhang, Y.; Wang, M. Tetrahedron Lett. 2008, 49, 6650.
[42] Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[43] Yong, G.-P.; Tian, D.; Tong, H.-W.; Liu, S.-M. J. Mol. Catal. A: Chem. 2010, 323, 40.
[44] Kantam, M. L.; Prakash, B. V.; Reddy, C. R. V.; Sreedhar, B. Synlett 2005, 2329.
[45] Lo, V. K.-Y.; Liu, Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2006, 8, 1529.
[46] Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. Green Chem. 2007, 9, 742.
[47] Zhang, X.; Corma, A. Angew. Chem. Int. Ed. 2008, 47, 4358.
[48] Layek, K.; Chakravarti, R.; Kantam, M. L.; Maheswaran, H.; Vinu, A. Green Chem. 2011, 13, 2878.
[49] Yadav, J. S.; Reddy, B. V. S.; Naveenkumar, V.; Rao, R. S.; Nagaiah, K. New. J. Chem. 2004, 28, 335.
[50] Shi, L.; Tu, Y.-Q; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004, 6, 1001.
[51] Likhar, P. R; Roy, S.; Roy, M.; Subhas, M. S.; Kantam, M. L.; De, R. L. Synlett 2007, 2301.
[52] Li, P.; Wang, L. Tetrahedron 2007, 63, 5455.
[53] Wang, M.; Li, P.; Wang, L. Eur. J. Org. Chem. 2008, 2255.
[54] Patil, M. K.; Keller, M.; Reddy, B. M.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2008, 4440.
[55] Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S. R. Tetrahedron Lett. 2007, 48, 7184.
[56] Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. B. S.; Venkanna, G. T. Tetrahedron Lett. 2007, 48, 7332.
[57] Mukhopadhyay, C.; Rana, S. Catal. Commun. 2009, 11, 285.
[58] Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Chem. Commun. 2004, 1638.
[59] Fischer, C.; Carreria, E. M. Org. Lett. 2001, 3, 4319.
[60] Zhang, Y.; Li, P.; Wang, M.; Wang, L. J. Org. Chem. 2009, 74, 4364.
[61] Zeng, T.; Chen, W.-W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C.-J. Green Chem. 2010, 12, 570.
[62] Namitharan, K.; Pitchumani, K. Eur. J. Org. Chem. 2010, 411.
[63] Samai, S.; Nandi, G. C.; Singh, M. S. Tetrahedron Lett. 2010, 51, 5555.
[64] Will, G.; Boschloo, G.; Rao, S. N.; Fitzmaurice, D. J. Phys. Chem. B 1999, 103, 8067.
[65] Wu, W.-Y.; Chen, S.-N.; Tsai, F.-Y. Tetrahedron Lett. 2006, 47, 9267.
[66] Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 179.
[67] Lai, C.; Xi, C.; Chen, W.; Hua, R. Tetrahedron 2006, 62, 6295.
[68] Krawczyk, H.; Albrecht, Ł. Synthesis 2005, 2887.
[69] Al-Maksoud, W.; Mesnager, J.; Jaber, F.; Pinel, C.; Djakovitch, L. J. Organomet. Chem. 2009, 694, 3222.
[70] Xu, Y.; Jin, X.; Huang, G.; Huang, Y. Synthesis 1983, 556.
[71] Drew, J.; Letellier, M.; Morand,P.; Szabo, A. G. J. Org. Chem. 1987, 52, 4047.
[72] Shaibakova, M. G.; Titova, I. G.; Makhmudiyarov, G. A.; Ibragimov, A. G.; Dzhemilev, U. M. Russian J. Org. Chem. 2010, 46, 43.
[73] Rahman, M.; Bagdi, A. K.; Majee, A.; Hajra, A. Tetrahedron Lett. 2011, 52, 4473.
[74] Fodor, A.; Kiss, A.; Debreczeni, N.; Hell, Z.; Gresits, I. Org. Biomol. Chem. 2010, 8, 4575.
[75] Al-Rawi, J. M. A.; Khuthier, A.-H. Org. Magn. Reson. 1981, 15, 285.
[76] Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958.
[77] Alonso, F.; Osante, I.; Yus, M. Tetrahedron 2007, 63, 93.
[78] Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.
[79] Lo, V. K.-Y.; Kung, K. K.-Y.; Wong, M.-K.; Che, C.-M. J. Organomet. Chem. 2009, 694, 583.
[80] Parrish, J.P.; Jung, Y.C.; Shin, S.I.; Jung, K.W. J. Org. Chem. 2002, 67, 7127.
[81] Tsui, G.C.; Lautens, M. Angew. Chem. Int. Ed. 2010, 49, 8938.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top