跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎輔寰
研究生(外文):Fu-Huang Li
論文名稱:以奈米矽場效應電晶體偵測順-反偶氮苯芳香族衍生物
論文名稱(外文):Detection of cis-trans azobenzene derivatives with aromatic substituted groups by silicon nanowire field-effect-transistor
指導教授:蔡麗珠蔡麗珠引用關係蘇昭瑾
指導教授(外文):Li-Chu TsaiChao-Chin Su
口試委員:陳逸聰陳啟東
口試委員(外文):Yit-Tsong ChenChii-Dong Chen
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:47
中文關鍵詞:偶氮苯芳香族衍生物3-氨丙基三乙氧基矽烷奈米矽線場效應電晶體
外文關鍵詞:DBAAPTESSilicon nanowire field-effect-transistor sensor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
化學分子中有少數的分子會因為外在因素的影響而改變它的結構,如光、熱、機械應力及靜電刺激等,其中因照光而改變結構的分子稱之為光致變色分子,像是偶氮苯、二芳基乙烯、螺吡喃、螺噁嗪與俘精酸酐等皆為常見的光致變色分子,在本論文中所使用的分子為偶氮苯芳香族衍生物 (DBA) ,並利用化學修飾的方式將偶氮苯芳香族衍生物 (DBA) 與3-氨丙基三乙氧基矽烷以共價鍵的方式修飾於奈米矽線場效應電晶體上。
偶氮苯芳香族衍生物 (DBA) 是一種光致異構分子,它在365 nm及450 nm的波長時,會分別呈現順式及反式兩種結構。結構的改變會改變電子雲分佈且導致分子電偶極矩產生變化,經由多次重複的實驗,我們證明順式及反式DBA的不同分子偶極矩足以使奈米矽線場效應電晶體的電流產生明顯差異,因此可作為順式及反式分子的檢測器。如果電流的改變量夠大,這元件有希望可形成一個光驅動的開關。



Some types of molecules change their structures by light, heat, mechanical stress, or electrostatic stimulation. Photo-induced isomerism such as azobenzene, diarylethene, spiropyran, spirooxazine and fulgide are molecules which when illuminated with the light of a specific wavelength can undergo a conformation transition. In this study, we chose azobenzene derivative(DBA) was our choice, and modified DBA and APTES in silicon nanowires(SiNW) field effect transistor by chemical process.
Azobenzene derivative(DBA) is a photo-induced isomerism, respectively, showing the cis- and trans- structure when illuminated with UV and visible light at 365nm and 450nm. The electron cloud (both the density and distribution) changes with the comformation transition, and can lead to different of dipole moments. As a result of many experiments, we proved that the different dipole moments between cis- and trans- DBA cause the FET current changed obviously, so it can be a cis- and trans- comformation sensor. It is possible to become a photoswitch if the FET current changed more obviously.



中文摘要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VI
專有名詞縮寫表 IX
第一章 前言 1
第二章 文獻回顧 2
2.1 場效應電晶體 2
2.1.1 金屬氧化物半導體場效應電晶體 3
2.1.2 奈米矽線場效應電晶體 5
2.2 研究動機及目的 6
2.2.1利用SiNW-FET偵測偶氮苯分子的順反異構化 6
2.3 奈米矽線場效應電晶體的製造(Top-down) 8
2.4 光致變色材料 10
2.4.1 偶氮苯芳香族系列 11
2.4.2 二芳基乙烯系列 13
2.4.3 螺吡喃及螺噁嗪系列 14
2.4.4 俘精酸酐系列 15
2.5奈米矽線場效應電晶體表面改質 16
2.5.1 表面接枝聚合物 16
2.5.2 矽烷偶聯劑 17
第三章 實驗方法與流程 18
3.1 實驗藥品 18
3.2 實驗設備和裝置 19
˙自製放大器 19
˙實驗使用的光源 21
˙平行電場裝置 22
˙電流量測 23
3.3實驗步驟 25
˙實驗流程 26
˙試片清洗 26
˙試片表面氫氧化 26
˙修飾APTES 27
˙修飾DBA 28
3.4 FITC螢光實驗 29
第四章 結果與討論 31
4.1 APTES分析 31
˙紅外線光譜分析 31
˙XPS分析 32
˙AFM分析 35
˙螢光分析 36
4.2 DBA分析 37
˙紫外光-可見光光譜分析 37
˙APTES及DBA的電性量測 38
4.3 檢測順式及反式DBA 39
第五章 結論 43
參考文獻 44



1.Tans, S.J., A.R.M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature, 1998. 393(6680): p. 49-52.
2.Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
3.Zhao, Y.-L., et al., Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Advanced Materials, 2008. 20(10): p. 1910-1915.
4.Cui, Y., et al., Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B, 2000. 104(22): p. 5213-5216.
5.Hahm, J.-i. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2003. 4(1): p. 51-54.
6.Lin, M.C., et al., Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Letters, 2007. 7(12): p. 3656-3661.
7.Ishikawa, F.N., et al., Label-Free, Electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009. 3(5): p. 1219-1224.
8.Wang, C.-W., et al., In situ detection of chromogranin A released from living neurons with a single-walled carbon-nanotube field-effect transistor. Small, 2007. 3(8): p. 1350-1355.
9.Liu, et al., Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Letters, 2004. 4(4): p. 551-554.
10.Hugel, T., et al., Single-molecule optomechanical cycle. Science, 2002. 296(5570): p. 1103-1106.
11.Hirshberg, Y., Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. Journal of the American Chemical Society, 1956. 78(10): p. 2304-2312.
12.Akiyama, H. and N. Tamaoki, Synthesis and photoinduced phase transitions of poly(N-isopropylacrylamide) derivative functionalized with terminal azobenzene units. Macromolecules, 2007. 40(14): p. 5129-5132.
13.Naujok, R.R., H.J. Paul, and R.M. Corn, Optical second harmonic generation studies of azobenzene surfactant adsorption and photochemistry at the water/1,2-dichloroethane interface. The Journal of Physical Chemistry, 1996. 100(25): p. 10497-10507.
14.Irie, M. and M. Mohri, Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. The Journal of Organic Chemistry, 1988. 53(4): p. 803-808.
15.Shen, Q., et al., Conformation-Induced electrostatic gating of the conduction of spiropyran-coated organic thin-film transistors. The Journal of Physical Chemistry C, 2009. 113(24): p. 10807-10812.
16.Minkin, V.I., Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chemical reviews, 2004. 104(5): p. 2751-76.
17.Berkovic, G., V. Krongauz, and V. Weiss, Spiropyrans and spirooxazines for memories and switches. Chemical reviews, 2000. 100(5): p. 1741-1754.
18.Wolak, M.A., et al., Tuning the optical properties of fluorinated indolylfulgimides. The Journal of Organic Chemistry, 2002. 68(2): p. 319-326.
19.Rau, H. and E. Lueddecke, On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. Journal of the American Chemical Society, 1982. 104(6): p. 1616-1620.
20.Fujino, T., S.Y. Arzhantsev, and T. Tahara, Femtosecond/Picosecond time-resolved spectroscopy of trans- azobenzene: isomerization mechanism following S2(ππ*) ← S0 photoexcitation. Bulletin of the Chemical Society of Japan, 2002. 75(5): p. 1031-1040.
21.Wei-Guang Diau, E., A new trans-to-cis photoisomerization mechanism of azobenzene on the S1(n,π*) surface. The Journal of Physical Chemistry A, 2004. 108(6): p. 950-956.
22.Nakamura, S. and M. Irie, Thermally irreversible photochromic systems. A theoretical study. The Journal of Organic Chemistry, 1988. 53(26): p. 6136-6138.
23.Taylor, L.D., J. Nicholson, and R.B. Davis, Photochromic chelating agents. Tetrahedron Letters, 1967. 8(17): p. 1585-1588.
24.Yokoyama, Y., et al., Optical resolution of a thermally irreversible photochromic indolylfulgide. Journal of the Chemical Society, Chemical Communications, 1995(7): p. 785-786.
25.Yokoyama, Y. and K. Takahashi, Trifluoromethyl-substituted photochromic indolylfulgide. A remarkably durable fulgide towards photochemical and thermal treatments. Chemistry Letters, 1996. 25(12): p. 1037-1038.
26.Heller, H.G. and S. Oliver, Photochromic heterocyclic fulgides. Part 1. Rearrangement reactions of (E)-[small alpha]-3-furylethylidene(isopropylidene)succinic anhydride. Journal of the Chemical Society, Perkin Transactions 1, 1981: p. 197-201.
27.Darcy, P.J., et al., Photochromic heterocyclic fulgides. Part 2. Electrocyclic reactions of (E)-[small alpha]-2,5-dimethyl-3-furylethylidene(alkyl-substituted methylene)succinic anhydrides. Journal of the Chemical Society, Perkin Transactions 1, 1981: p. 202-205.
28.Seibold, M., et al., Photochromic fulgides: towards their application in molecular electronics. Journal of Luminescence, 1997. 72–74: p. 454-456.
29.Gao, B., Y. Chen, and Z. Zhang, Preparation of functional composite grafted particles PDMAEMA/SiO2 and preliminarily study on functionality. Applied Surface Science, 2010. 257(1): p. 254-260.
30.Tsubokawa, N., et al., Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface. Reactive and Functional Polymers, 1998. 37(1–3): p. 75-82.
31.He, Q., L. Zeng, and Z. Wu, Magnetic gold film fabrication from MPTES-functionlized magnetite nanoparticles, in Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation - Volume 02. 2010, IEEE Computer Society. p. 595-598.
32.Latournerie, J., et al., Silicon oxycarbide glasses: Part 1—Thermochemical stability. Journal of the American Ceramic Society, 2006. 89(5): p. 1485-1491.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top