跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昂達
研究生(外文):Ang-Ta Tsai
論文名稱:滑石粉對聚乳酸之超臨界二氧化碳發泡條件的影響
論文名稱(外文):Effect of Talc on Polylactic Acid Foaming Using Supercritical Carbon Dioxide
指導教授:王賢達王賢達引用關係翁彰明
口試委員:楊正昌
口試日期:2012-05-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:聚乳酸滑石粉結晶性發泡溫度發泡壓力發泡體密度泡孔大小二氧化碳
外文關鍵詞:PLATalcCrystallizationFoaming TemperatureFoaming PressureFoaming DensityCell SizeCO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討滑石粉(Talc)對三種D型含量不同的聚乳酸(PLA) 之超臨界二氧化碳(CO2)發泡條件的影響,三種PLA分別為含D型3% 高結晶性PLA-1,和含D型8% 為低結晶性PLA-2,及含D型18% 非結晶性PLA-3,與Talc混合0.5 (per hundred resin)、1.0phr和2.0phr三種比率,得到共9種配方材料及三種PLA材料。經過熱壓成型製成1.0mm薄板再進行發泡加工,其發泡溫度為80℃~140℃與發泡壓力為1000psi、1500psi和 2000psi 之下,以二氧化碳(CO2)為發泡劑,含浸時間30分得到不同的PLA發泡體。
實驗結果顯示,PLA-1/Talc配方材料系列,除未添加Talc的PLA-1之外,其他配方材料皆在發泡條件內都無法獲得低的發泡體密度(因為發泡密度大於1.0 g/cm3)。PLA-3/Talc配方材料系列,皆能得到發泡密度小於0.1 g/cm3的發泡體,特別在發泡壓力2000psi下,發泡體具有小於100μm的泡孔。PLA-2/Talc配方材料系列,其發泡體密度隨發泡溫度及發泡壓力的上升而下降。三種PLA之中,PLA-3耐熱性最差,但最容易發泡;PLA-1耐熱性最佳,但最不易發泡。發泡過程中,亦觀察到滑石粉會促進PLA結晶或結晶度提高。


The research investigate the effect of talc on three polylactic acid (PLA) resins foaming using supercritical carbon dioxide(CO2). Three PLA sheets are with different contents of D-lactide high crystalline PLA-1 with 3% D-lactide, low crystalline PLA-2 with 8% D-lactide, and amorphous PLA-3 with 18% D-lactide. Talc with the content of 0.5phr (per hundred resins), 1.0phr, and 2.0phr talc mixed with three PLA resins to become nine compounds. Nine compounds and three PLA resins in the research were used and processed into a big sheet with one millimeter thickness by a hot press, The sheets were then cut and foamed at the foaming temperature ranging from 80℃ to 140℃, three foaming pressure of 1000psi, 1500psi, and 2000psi, and saturating time of 30 minutes. CO2 was the foaming agent.
Experimental results show that a low foam density of PLA-1 with talc compounds can not be achieved because PLA-1 sheets under the foaming conditions of the foam density is higher than 1.0 g/cm3 in the research. PLA-3 with talc compound can be produced into foams with density less than 0.1 g/cm3 and the foams made under foaming pressure of 2000psi display small cells in the foaming and average cell size is less than 100μm. When foaming pressure and temperatures increase, the foam density of PLA-2 with talc compound decreases, PLA-3 sheets shows the poorest heat resistance but easiest foaming, and PLA-1 sheets have the best heat resistance but the most difficult foaming among three PLA sheets. Talc is able to enhance the crystallization rate of PLA.

目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究目的 4
第二章 相關理論與文獻回顧 5
2.1 聚乳酸(Polylatic Acid, PLA) 5
2.1.1 聚乳酸簡介與發展史 5
2.1.2 聚乳酸之合成方法 8
2.1.3 聚乳酸的性質 9
2.1.4 聚乳酸的應用 10
2.2 滑石粉(Talc)的特性與應用 11
2.3 高分子發泡 11
2.3.1 發泡材料 11
2.3.2 發泡理論 13
2.3.3 發泡的方法 13
2.3.4 高分子發泡後的特性 14
2.4 超臨界發泡 15
2.4.1 超臨界CO2之特性 15
2.4.2 超臨界CO2發泡原理 15
2.4.3 超臨界CO2發泡成型法概述 17
2.4.4 高分子材料在超臨界CO2狀態下的特性 18
2.4.5 超臨界發泡體的特性與應用 19
第三章 實驗 20
3.1 材料 20
3.2 配方 21
3.3 實驗設備與儀器 21
3.4 實驗流程 22
3.5 實驗步驟與條件 23
第四章 結果與討論 25
4.1 材料之DSC分析結果 25
4.2 發泡溫度對發泡密度之探討 38
4.3 發泡壓力對發泡密度之探討 45
4.4 發泡體外觀型態之探討 47
4.5 發泡體微結構之探討 71
第五章 結論 78
參考文獻 80


參考文獻

[1] Mihai, M ; Huneault, MA; Favis, BD, “Rheology and Extrusion Foaming of Chain-Branched Poly(lactic acid)”, Polymer Engineering and Science, Vol. 50, Issue 3, 2010, pp. 629–642.
[2] Ganjyal, GM; Weber, R ; Hanna, MA , “Laboratory composting of extruded starch acetate and poly lactic acid blended foams”, Bioresource Technology, Vol. 98, Issue 16, 2007, pp. 3176–3179.
[3] Liu, B ; Jiang, L ; Zhang, JW , “Extrusion Foaming of Poly (lactic acid)/Soy Protein Concentrate Blends”, Macromolecular Materials and Engineering , Vol. 296, Issue 9, 2011, pp. 835¬–842.
[4] Matuana, LM; Faruk, O ; Diaz, CA , “ Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent”, Bioresource Technology, Vol. 100, Issue 23, 2009, pp. 5947–5954.
[5] Jeon, BJ ; Jeong, YG ; Min, BG ; Lyoo, WS ; Lee, SC, “ Lead Ion Removal Characteristics of Poly(lactic acid)/Hydroxyapatite Composite Foams Prepared by Supercritical CO2 Process”, Polymer Composites, Vol. 32, Issue 9, 2011, pp. 1408¬–1415.
[6] Baker, KC ; Manitiu, M ; Bellair, R ; Gratopp, CA ; Herkowitz, HN ; Kannan, RM, “ Supercritical carbon dioxide processed resorbable polymer nanocomposite bone graft substitutes”, ACTA Biomaterialia, Vol. 7, Issue 9, 2011, pp. 3382¬–3389.
[7] Miller, D ; Kumar, V, “A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets”, International Polymer Processing, Vol. 26, Issue 5, 2011, pp. 517¬–524.
[8] Jeon, BJ ; Jeong, YG ; Min, BG ; Lyoo, WS ; Lee, SC, “ Lead Ion Removal Characteristics of Poly(lactic acid)/Hydroxyapatite Composite Foams Prepared by Supercritical CO2 Process”, Polymer Composites, Vol. 32, Issue 9, 2011, pp. 1408¬–1415.
[9] Matuana, LM; Diaz, CA ; Matuana, LM; Diaz, CA, “ Study of Cell Nucleation in Microcellular Poly(lactic acid) Foamed with Supercritical CO2 through a Continuous-Extrusion Process” , Industarial & Engineering Chemistry Research, Vol. 49, Issue 5, 2010, pp. 2186–2193.
[10] Matuana, LM, “Solid state microcellular foamed poly(lactic acid): Morphology and property characterization”, Bioresource Technology, Vol. 99, Issue 9, 2008, pp. 3643–3650.
[11] Liu, JY ; Lou, LJ ; Yu, W ; Liao, RG ; Li, RM; Zhou, CX, “ Long chain branching polylactide: Structures and properties”, Polymer, Vol. 51, Issue 22, 2010, pp. 5186–5197.
[12] Mihai, M ; Huneault, MA; Favis, BD; Li, HB , “Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends”, Macromolecular Bioscience, Vol. 7, Issue 7, 2007, pp. 907–920.
[13] Pilla, S; Kim, SG ; Auer, GK ; Gong, SQ; Park, CB, “ Microcellular Extrusion-Foaming of Polylactide with Chain-Extender”, Polymer Engineering and Science, Vol. 49, Issue 8, 2009, pp. 1653–1660.
[14] Ewa Rudnik, “Compostable Polymer Materials”, Elsevier, 2008.
[15] Zhai, WT; Ko, Y ; Zhu, WL ; Wong, AS ; Park, CB, “A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2”, International Journal of Molecular Sciences, Vol. 10, Issue 12, 2009, pp. 5381–5397.
[16] Wang, XX; Kumar, V; Li, W, “Development of Crystallization in PLA During Solid-State Foaming Process Using Sub-Critical CO2”, Journal of Cellular Plastics, Vol. 31, Issue 1, 2012, pp. 1¬–18.
[17] Mihai, M ; Huneault, MA; Favis, BD, “Crystallinity Development in Cellular Poly(lactic acid) in the Presence of Supercritical Carbon Dioxide”, Journal of Applied Polymer Science, Vol. 113, Issue 5, 2009, pp. 2920–2932.
[18] E. J. Frazza, E. E. Schmitt, “A new absorbable suture”, Journal of Biomedical Materials Research, Vol. 5, Issue 2, 1971, pp. 43–58.
[19] Zhen Pan, Jiandong Ding, “Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine”, Interface Focus, Vol. 2, Issue 3, 2012, pp. 366–377.
[20] Kefeng Wang, Changchun Zhou, Youliang Hong and Xingdong Zhang, “A review of protein adsorption on bioceramics”, Interface Focus, Vol. 2, Issue 3, 2012, pp. 259–277.
[21] Shaza B. Idris, Staffan Dånmark, Anna Finne-Wistrand, Kristina Arvidson, Ann-Christine Albertsson, Anne Isine Bolstad, Kamal Mustafa, “Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering”, Journal of Bioactive and Compatible Polymers, Vol. 25, Issue 6, 2010, pp. 567–583.
[22] 楊斌 編著,綠色塑料聚乳酸,北京,化學工業出版社,2007年9月出版。
[23] 任傑著 著作,生物可降解聚乳酸材料的製備、改性、加工與應用,清華大學出版社,2011年1月出版。
[24] Vincenzo Piemonte, “Polylactic Acid: Synthesis, Properties and Applications”, Chemistry Research and Applications, Nova Science Pub Incorporated, 2011.
[25] Lee Tin Sin, “Polylactic Acid”, Plastics Design Library, Elsevier Science & Technology, 2012.
[26] Frederick T. Wallenberger, Norman E. Weston, “Natural Fibers, Plastics and Composites”, Springer, 2004.
[27] J. A. Brydson, “Plastics Materials”, Referex Engineering, Butterworth-Heinemann, 1999.
[28] 參考網址: http://www2.dupont.com/Phoenix_Heritage/en_US/index.html DUPONT公司歷史。
[29] 參考網址: http://www.cargill.com/company/history/index.jsp / 關於Cargill公司發展。
[30] 參考網址: http://jp.mitsuichem.com/corporate/history/index.htm 關於三井化學公司歷史。
[31] 參考網址: http://www.shimadzu.co.jp/visionary/index.html 關於島津公司歷史。
[32] 參考網址:http://www.natureworksllc.com/About-NatureWorks-LLC.aspx / 關於NatureWorks LLC公司發展。
[33] Yoo, DK ; Kim, D; Lee, DS, “Synthesis of lactide from oligomeric PLA: Effects of temperature, pressure, and catalyst”, Macromolecular Research, Vol. 14, Issue 5, 2006, pp. 510–516.
[34] 李繼煌,乳酸之開發與應用綜論,碩士論文,朝陽科技大學應用化學系,台中,2006。
[35] 林卓儀,以Lactobacillus amylovorus 利用澱粉醱酵製造乳酸,碩士論文,逢甲大學化學工程系,台中,2009。
[36] 翁國佑,米根黴菌在攪拌式發酵槽中產生L(+)-乳酸之研究,碩士論文,國立台灣科技大學化學工程系,台北,2010。
[37] Rafael Auras, Bruce Harte, Susan Selke, “An Overview of Polylactides as Packaging Materials”, Macromolecular Bioscience, Vol. 4, 2004, pp. 835–864.
[38] Liu, JY ; Lou, LJ ; Yu, W ; Liao, RG ; Li, RM; Zhou, CX, “ Long chain branching polylactide: Structures and properties”, Polymer, Vol. 51, Issue 22, 2010, pp. 5186–5197.
[39] Li, HB ; Huneault, MA, “Effect of Chain Extension on the Properties of PLA/TPS Blends”, Journal of Applied Polymer Science, Vol. 122, Issue 1, 2011, pp. 134¬–141.
[40] 翁彰明,微生物聚酯薄膜的物性和分解性,化工資訊與商情,NO.60,2008,pp.63-67.
[41] 翁彰明,吹膜製程的聚乳酸薄膜結晶行為與機械性質,化工資訊與商情,NO.60,2008,pp.68-73.
[42] Wang, J; Zhu, WL; Zhang, HT; Park, CB, “Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity” Chemical Engineering Science, Vol. 75, 2012, pp. 390¬–399.
[43] 許銘欽,滑石粉表面修飾對聚乳酸結晶行為的影響,碩士論文,東海大學化學工程與材料工程學系,台中,2008。
[44] Pilla, S; Kim, SG ; Auer, GK ; Gong, SQ; Park, CB, “ Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends”, Materials Science & Engineering C-Materials for Biological Applications, Vol. 30, Issue 2, 2010, pp. 255–262.
[45] Nofar, M ; Zhu, WL ; Park, CB ; Randall, J, “Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide”, Industarial & Engineering Chemistry Research, Vol. 50, Issue 24, 2012, pp. 13789¬–13798.
[46] Li, DC ; Liu, T; Zhao, L; Lian, XS ; Yuan, WK, “Foaming of Poly(lactic acid) Based on Its Nonisothermal Crystallization Behavior under Compressed Carbon Dioxide”, Industarial & Engineering Chemistry Research, Vol. 50, Issue 4, 2011, pp. 1997¬–2007.
[47] Mihai, M ; Huneault, MA; Favis, BD, “Crystallinity Development in Cellular Poly(lactic acid) in the Presence of Supercritical Carbon Dioxide”, Journal of Applied Polymer Science, Vol. 113, Issue 5, 2009, pp. 2920–2932.
[48] Wang, XX; Kumar, V; Li, W, “Development of Crystallization in PLA During Solid-State Foaming Process Using Sub-Critical CO2”, Journal of Cellular Plastics, Vol. 31, Issue 1, 2012, pp. 1¬–18.
[49] 吳舜英與徐敬一合編,塑膠發泡成型技術,台南:復文書局,1997,第1-38頁。
[50] 吳舜英與徐敬一合編,泡沫塑料成型,第二版,北京,化學工業出版社,1999年2月出版。
[51] 梁明在,超臨界流體在塑膠發泡應用的演進與原理,scCO2微細發泡技術發表會,台中,1999,第2-22頁。
[52] 張巧慧,聚苯乙烯超臨界發泡與黏彈性關係之探討,碩士論文,長庚大學化工與材料研究所,桃園,2000。
[53] 劉冠合,超臨界二氧化碳流體對聚乙烯氧/聚甲基丙烯酸甲酯摻合體之影響,碩士論文,雲林科技大學工業化學與災害防治研究所,雲林,2001。
[54] 周錦敏,以超臨界二氧化碳製備EVA發泡材之研究,碩士論文,長庚大學化工與材料研究所,桃園,2005。
[55] 李坤霖,以超臨界二氧化碳製備mCOC發泡材之研究,碩士論文,長庚大學化工與材料研究所,桃園,2005。
[56] C.M. Wong, S.J. Tsai,C.H. Ying and M.L. HUNG,”Effect of low density polyethylene on polystyrene foam”, Journal of Cellular Plastics,Vol.42, 2006, pp.155-163.
[57] 翁彰明,「塑膠發泡體的真空保溫片」,化工資訊與商情,NO.48,2007,第44-49頁。
[58] 楊錫卿,以超臨界二氧化碳製備熱塑性聚氨酯微發泡材,碩士論文,長庚大學化工與材料研究所,桃園,2007。
[59] 蘇瑞光,超臨界流體微細發泡射出成行之聚乳酸/蒙脫土奈米複合材料機械/熱性質之研究,碩士論文,清雲科技大學機械工程研究所,桃園,2007。
[60] 林弘凡,「聚乳酸發泡體應用與成型技術」,化工資訊與商情,NO.48,2007,第34-43頁。
[61] 林宴榛,高密度聚乙烯對聚苯乙烯發泡體的影響,碩士論文,臺北科技大學有機高分子研究所,台北,2007。
[62] 陳佳瑜,SEBS對聚苯乙烯超臨界發泡之影響,碩士論文,臺北科技大學有機高分子研究所,台北,2008。
[63] 張志仁,不同性質茂金屬聚乙烯及聚乙烯-醋酸乙烯酯共聚物於超臨界發泡之影響,臺北科技大學有機高分子研究所,台北,2010。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top