跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳佩馨
研究生(外文):Pei-Shin Wu
論文名稱:硫化鎘與硒化鎘敏化氧化鋅奈米棒陣列之高效率太陽光電水分解應用
論文名稱(外文):Highly efficient solar water splitting using CdS and CdSe sensitized ZnO nanorod arrays.
指導教授:蘇昭瑾
指導教授(外文):Chao-Chin Su
口試委員:吳春桂林景泉簡淑華
口試委員(外文):Chun-Guey WuJiing-Chyuan LinShu-Hua Chien
口試日期:2012-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:硫化鎘硒化鎘氧化鋅奈米棒陣列太陽光電水分解
外文關鍵詞:CdSCdSeZnO Nanorod ArraysSolar Water-Splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用化學浴沉積法(chemical bath deposition)在透明導電FTO玻璃上直接生長與基材垂直排列的定向氧化鋅奈米棒陣列(ZNR),再在其表面以連續離子層吸附反應法(SILAR)披覆硫化鎘(CdS)奈米顆粒。以FE-SEM和HR-TEM觀察其表面形貌、UV-Vis測其吸光性質、XRD確定氧化鋅與硫化鎘晶相。在太陽光電水分解之量測中,我們以製得之CdS/ZNR電極作為工作電極,金線為輔助電極,Ag/AgCl為參考電極,0.35 M Na2SO3與0.25 M Na2S的水溶液為電解液,AM 1.5模擬太陽光(100 mW/cm2 )為光源。在披覆CdS的製程中使用之溶劑與披覆次數會影響CdS粒子的特性,進而影響對太陽光電水分解之效率。研究結果顯示,以水作為溶劑進行CdS披覆,CdS會以顆粒狀附著於ZNR,又以披覆八次(CdS/ZNR-8w)測得的太陽光電水分解之光電轉換效率最高(4.14%);以乙醇作為溶劑披覆CdS,CdS會以薄膜狀附著於ZNR,以披覆六次(CdS/ZNR-6e)測得的光電轉換效率最高(3.86%)。由此得知,在ZNR基材的溶劑選擇水比乙醇好。又在披覆六次的製程中,前三次以水溶劑披覆顆粒狀的CdS,後三次以乙醇溶劑披覆薄膜狀的CdS (CdS/ZNR-3w3e),此披覆順序使CdS披覆更為緊密,減少漏電流發生機率,其光電轉換效率更提升至5.23%。
另外,再在ZNR表面以SILAR法披覆硒化鎘(CdSe)奈米顆粒,重複披覆次數製得不同CdSe含量之硒化鎘/氧化鋅奈米棒陣列電極(CdSe/ZNR)。當僅披覆CdSe奈米顆粒時,光電轉換效率為4.12%。再將CdS/ZNR與CdSe/ZNR兩電極的非導電面合併後照光,光先經CdS面穿透至CdSe面,使光譜中400-550 nm的波長被CdS奈米顆粒吸收,550-750 nm的波長被CdSe奈米顆粒吸收,充分利用可見光後,其太陽光電水分解之光電轉換效率更大幅提升至6.61%。


We fabricated CdS quantum dots sensitized ZnO nanorod arrays (CdS/ZNR) as photoanodes that used for solar water splitting. The vertically aligned ZNR was fabricated via a simple chemical bath deposition method (CBD), and the CdS quantum dots were coated on the ZNR by using successive ionic layer adsorption and reaction (SILAR). The prepared electrodes were characterized by FE-SEM, HR-TEM, XRD, UV-Vis, and photoelectrochemical measurements. All the photoelectrochemical measurements were carried out in a three-electrode cell with an Au wire as a counter electrode and an Ag/AgCl electrode as a reference. A mixture of 0.35 M Na2SO3 and 0.25 M Na2S aqueous solution was used as electrolyte. The working electrode was illuminated with a solar-simulated light source (AM 1.5 G filtered, 100 mW/cm2 ). In this study, we changed the solvent (water and ethanol) used in SILAR processes to fabricated various CdS/ZNR photoanodes, such as eight water-based SILAR cycles (CdS/ZNR-8w), six ethanol-based SILAR cycles (CdS/ZNR-6e), and three water-based as well as three ethanol-based SILAR cycles (CdS/ZNR-3w3e). After CdS sensitization, TEM images showed that ZnO nanorod were covered with nanoparticular forme in water solvent but with film form in ethanol solvent. The photoconversion efficiency of CdS/ZNR-8w for 4.14% was much higher than that of CdS/ZNR-6e for 3.86%, so the choice of solvent that water was better than ethanol. Further, the photoconversion efficiency of CdS/ZNR-3w3e had best performance of 5.23%. The photoconversion efficiency was enhanced because of the ZnO nanorod were covered with nanoparticle and then film. Such CdS composite was closely coated on the ZnO nanorod and could collect more excited photoelectrons.
Furthermore, we also fabricated CdSe quantum dots sensitized ZNR (CdSe/ZNR) as photoanode. The CdSe quantum dots were coated on the ZNR surface using SILAR methode. The photoconversion efficiency of the single sided CdSe/ZNR was 4.12%. In order to increase the light-harvesting in the full spectrum of visible light region, we used CdS to absorb the short wavelength region (400-550 nm), and CdSe to absorb the long wavelength region (550-750 nm). Therefore, we combined CdS/ZNR electrode with CdSe/ZNR electrode by their non-conductive sides (CdS//CdSe), and the incident light transmitted through the CdS/ZNR substrate to the CdSe/ZNR substrate, thus the light could be absorbed by both substrates. The best photoconversion efficiency of 6.61% was achieved by using the CdS//CdSe as photoelectrode in solar water splitting.


摘 要 …………………………………………………………………….. i

Abstract …………………………………………………………………….. iii

致謝 …………………………………………………………………….. v

目錄 …………………………………………………………………….. vi

表目錄 …………………………………………………………………….. viii

圖目錄 …………………………………………………………………….. ix

第一章 緒論……………………………………………………………….. 1
1.1 前言……………………………………………………………….. 1
1.2 再生能源與產氫研究之簡介………………………………….… 3
1.3 光觸媒催化原理……………………………………………….…. 8
1.4 太陽光電水分解反應………………………………………….…. 10
1.5 一維氧化鋅奈米棒…………………………………………….…. 12
1.6 量子點 (Quantum Dots)……………………………………….…. 16
1.6.1 量子點的特性……………………………………….…... 16
1.6.2 量子點合成與組裝技術…………………………….…... 21
1.6.3 量子點敏化氧化鋅奈米棒…………………………….... 22
1.7 研究動機與目的………………………………………………….. 23
第二章 實驗方法………………………………………………………….. 25
2.1 藥品及儀器……………………………………………………….. 25
2.2 樣品製備………………………………………………………….. 27
2.2.1 氧化鋅奈米棒陣列…………………………………….... 27
2.2.2 連續離子層吸附反應法披覆CdS奈米粒子………….. 27
2.2.3 連續離子層吸附反應法披覆CdSe奈米粒子……….... 31
2.3 材料特性分析…………………………………………………….. 32
2.3.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy;FE-SEM)……………………..…32
2.3.2 高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscopy;HR-TEM)…….…..32
2.3.3 能量分散式X光能譜(Energy Dispersive X-ray Spectroscopy;EDS)……..…………………………....…..32
2.3.4 X-射線繞射圖譜(X-ray Diffraction Pattern;XRD)……………………………………………33
2.3.5 紫外光-可見光吸收光譜(Ultraviolet-Visible Spectrum)……..…………………………….………33
2.4 太陽光電水分解之組裝與測試………………………………….. 34
2.4.1 水分解反應設備裝置……………………..…………….. 34
2.4.2 測量方式…………..…………………………………….. 35
第三章 結果與討論……………………………………………………….. 40
3.1 氧化鋅奈米棒陣列…………………………………………….…. 40
3.2 以水(乙醇)作為溶劑將硫化鎘披覆於氧化鋅奈米棒陣列…….. 44
3.2.1 工作電極之特性鑑定……………..…………………….. 44
3.2.2 太陽光電水分解量測………………..………………….. 61
3.3 水和乙醇兩溶劑交換披覆硫化鎘於氧化鋅奈米棒陣列……… 67
3.3.1 工作電極之特性鑑定…………………..……………….. 67
3.3.2 太陽光電水分解量測………………………..………….. 72
3.4 電化學交流阻抗分析…………………………………………….. 77
3.5 雙面硫化鎘和硒化鎘敏化於氧化鋅奈米棒陣列………………. 78
3.5.1 工作電極之特性鑑定………………………..………….. 78
3.5.2 太陽光電水分解量測………………………..………….. 85
第四章 結論………………………………………………………………... 95
參考文獻 ……………………………………………………………………... 96


[1] 再生能源發展條例-中華民國98年7月8日 華總一義字第09800166471號。
[2]J. R. Rostrup-Nielsen and I. Alstrup,“Innovation and science in the process industry : Steam reforming and hydrogenolysis”, Catalysis Today, 1999, 53, 311-316.
[3]M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A., 2007, 365, 993-1005.
[4]J. E. Funk and M. R. Reinstrom, Final Report Energy Depot Electrolysis Systems Study,TID 20441,Vol. 2,Supplement A,1964.
[5]T. Nakamura, “Hydrogen production from water utilizing solar heat at high temperatures”, Solar Energy, 1977, 19, 467-475.
[6]M. Sakurai, H. Nakajima, K. Onuki, K. Ikenoya and S. Shimizu. “Preliminary process analysis for the closed cycle operation of the iodine sulfur thermochemical hydrogen production process”, International Journal of Hydrogen Energy, 1999, 24, 603-612.
[7]肖鋼,染料電池技術,台北:全華圖書股份有限公司,2010。
[8]J. Turner, G. Sverdrup, K. M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans and D. Blake, “Renewable hydrogen production”, International Journal of Energy Research, 2008, 32, 379-407.
[9]D. Das and T. N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, Int. J. Hydrogen Energy, 2001, 26, 13-28.
[10]2010年能源產業技術白皮書 - 經濟部能源局。
[11]A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 1972, 238, 37-38.
[12]T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, 2002, 27, 991-1022.
[13]M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338-344.
[14]A. Kudo, H. Kato and I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chemistry Letters, 2004, 33,1534-1539.
[15]A. Kudo, “Photocatalyst materials for water splitting”, Catalysis Surveys from Asia, 2003, 7, 31-38.
[16]張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,台北:協志工業叢書印行, 2000。
[17]J. Nowotny, T. Bak, M.K. Nowotny and L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy, 2007, 32, 2609-2629.
[18]M. H. Hwang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 2001, 292, 1897-1899.
[19]W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett., 2002, 80, 4232-4234.
[20]J. H. Choi, J. S. Seo, S. N. Cha, H. J. Kim, S. M. Kim, Y. J. Park, S. W. Kim, J. B. Yoo and J. M. Kim, “Effects of Flow Transport of the Ar Carrier on the Synthesis of ZnO Nanowires by Chemical Vapor Deposition”, Jpn. J. Appl. Phys., 2011, 50, 015001.
[21]M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physics Letters, 2002, 363, 123-128.
[22]L. Guo, Y. L. Ji and H. Xu, “Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure”, J. Am. Chem. Soc., 2002, 124, 14864–14865.
[23]J. Zhang, L. Sun, J. Yin, H. Su and C. Liao and C. Yan, “Control of ZnO Morphology via a Simple Solution Route”, Chem. Mater., 2002, 14, 4172-4177.
[24]B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc., 2003, 125, 4430-4431.
[25]L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, J. Phys. Chem. B., 2001, 105, 3350-3352.
[26]X. Y. Kong and Z. L. Wang, “Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals”, Appl. Phys. Lett.,2004, 84, 975-977.
[27]L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Adv. Mater.,2003, 15, 464-466.
[28]M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong and L. D. Zhang, “Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method”, Journal of Crystal Growth, 2006, 291, 334-339.
[29]S. N. Bai and S. C. Wu, “Synthesis of ZnO nanowire by the hydrothermal method, using sol-gel prepared ZnO seed films”, J. Mater. Sci.:Mater Electron, 2011, 22, 339-344.
[30]A. Sugunan, H. C.Warad, M. Boman and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine”, J. Sol-Gel Sci Techn., 2006, 39, 49–56.
[31]K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem., 2004, 14, 2575–2591.
[32]J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method”, Solid State Communications, 2002, 124, 45-48.
[33]I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc., 2006, 128, 2385-2393.
[34]R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals:Implications for Solar Energy Conversion”, Phys. Rev. Lett ., 2004, 92, 186601.
[35]A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots”, Langmuir, 1998, 14, 3153-3156.
[36]R. Memming, Semiconductor Electrochemistry, 1st ed. Wiley-Vch, New York, 2001.
[37]W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers”, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
[38]W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals”, Chem. Mater. , 2003, 15, 2854-2860.
[39]R. He, X. F. Qian, J. Yin, H. A Xi, L. J. Bian and Z. K. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation”, Colloids and Surfaces A: Physicochem. Eng. Aspects ,2003, 220,151-157.
[40]Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties”, J. Phys. Chem. , 1991, 95, 525-532.
[41]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics”, Science, 2005, 307, 538-544.
[42]A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion”, Inorganic Chemistry, 2005, 44, 6893-6899.
[43]Y. F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process”, Applications of Surface Science, 1985, 22-23, 1061–1074.
[44]H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method”, Bull. Mater. Sci., 2004, 27, 85-111.
[45]Y. Tak, S. J. Hong, J. S. Lee and K. Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion”, J. Mater. Chem., 2009, 19, 5945-5951.
[46]W. Lee, S. K. Min, V. Dhas, S. B. Ogale and S. H. Han “Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells”, Electrochemistry Communications, 2009, 11, 103-106.
[47]G. Wang, X. Yang, F. Qian, J. Z. Zhang and Y. Li, “Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation”, Nano Lett., 2010, 10, 1088-1092.
[48]M. Seol, H. Kim, W. Kim, K. Yong, “Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer”, Electrochemistry Communications, 2010, 12, 1416-1418.
[49]http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png
[50]S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”, science, 2002, 297, 2243-2245.
[51]H. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y. Y. Tay and H. J. Fan, “Composition-Graded ZnxCd1-xSe@ZnO Core-Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation”, J. Phys. Chem. C., 2012, 116, 3802-3807.
[52]蕭光宏,二氧化鈦微結構對染料敏化太陽能電池光電效能的影響,碩士論文,國立台灣大學化學系,台北,2008。
[53]N. Vlachopoulos, P. Liska, J. Augustynski and M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc., 1988, 110, 1216-1220.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊