[1] 再生能源發展條例-中華民國98年7月8日 華總一義字第09800166471號。
[2]J. R. Rostrup-Nielsen and I. Alstrup,“Innovation and science in the process industry : Steam reforming and hydrogenolysis”, Catalysis Today, 1999, 53, 311-316.
[3]M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A., 2007, 365, 993-1005.
[4]J. E. Funk and M. R. Reinstrom, Final Report Energy Depot Electrolysis Systems Study,TID 20441,Vol. 2,Supplement A,1964.
[5]T. Nakamura, “Hydrogen production from water utilizing solar heat at high temperatures”, Solar Energy, 1977, 19, 467-475.
[6]M. Sakurai, H. Nakajima, K. Onuki, K. Ikenoya and S. Shimizu. “Preliminary process analysis for the closed cycle operation of the iodine sulfur thermochemical hydrogen production process”, International Journal of Hydrogen Energy, 1999, 24, 603-612.
[7]肖鋼,染料電池技術,台北:全華圖書股份有限公司,2010。
[8]J. Turner, G. Sverdrup, K. M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans and D. Blake, “Renewable hydrogen production”, International Journal of Energy Research, 2008, 32, 379-407.
[9]D. Das and T. N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, Int. J. Hydrogen Energy, 2001, 26, 13-28.
[10]2010年能源產業技術白皮書 - 經濟部能源局。
[11]A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 1972, 238, 37-38.
[12]T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, 2002, 27, 991-1022.
[13]M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338-344.
[14]A. Kudo, H. Kato and I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chemistry Letters, 2004, 33,1534-1539.
[15]A. Kudo, “Photocatalyst materials for water splitting”, Catalysis Surveys from Asia, 2003, 7, 31-38.
[16]張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,台北:協志工業叢書印行, 2000。
[17]J. Nowotny, T. Bak, M.K. Nowotny and L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy, 2007, 32, 2609-2629.
[18]M. H. Hwang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 2001, 292, 1897-1899.
[19]W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett., 2002, 80, 4232-4234.
[20]J. H. Choi, J. S. Seo, S. N. Cha, H. J. Kim, S. M. Kim, Y. J. Park, S. W. Kim, J. B. Yoo and J. M. Kim, “Effects of Flow Transport of the Ar Carrier on the Synthesis of ZnO Nanowires by Chemical Vapor Deposition”, Jpn. J. Appl. Phys., 2011, 50, 015001.
[21]M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physics Letters, 2002, 363, 123-128.
[22]L. Guo, Y. L. Ji and H. Xu, “Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure”, J. Am. Chem. Soc., 2002, 124, 14864–14865.
[23]J. Zhang, L. Sun, J. Yin, H. Su and C. Liao and C. Yan, “Control of ZnO Morphology via a Simple Solution Route”, Chem. Mater., 2002, 14, 4172-4177.
[24]B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc., 2003, 125, 4430-4431.
[25]L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, J. Phys. Chem. B., 2001, 105, 3350-3352.
[26]X. Y. Kong and Z. L. Wang, “Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals”, Appl. Phys. Lett.,2004, 84, 975-977.
[27]L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Adv. Mater.,2003, 15, 464-466.
[28]M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong and L. D. Zhang, “Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method”, Journal of Crystal Growth, 2006, 291, 334-339.
[29]S. N. Bai and S. C. Wu, “Synthesis of ZnO nanowire by the hydrothermal method, using sol-gel prepared ZnO seed films”, J. Mater. Sci.:Mater Electron, 2011, 22, 339-344.
[30]A. Sugunan, H. C.Warad, M. Boman and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine”, J. Sol-Gel Sci Techn., 2006, 39, 49–56.
[31]K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem., 2004, 14, 2575–2591.
[32]J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method”, Solid State Communications, 2002, 124, 45-48.
[33]I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc., 2006, 128, 2385-2393.
[34]R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals:Implications for Solar Energy Conversion”, Phys. Rev. Lett ., 2004, 92, 186601.
[35]A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots”, Langmuir, 1998, 14, 3153-3156.
[36]R. Memming, Semiconductor Electrochemistry, 1st ed. Wiley-Vch, New York, 2001.
[37]W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers”, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
[38]W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals”, Chem. Mater. , 2003, 15, 2854-2860.
[39]R. He, X. F. Qian, J. Yin, H. A Xi, L. J. Bian and Z. K. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation”, Colloids and Surfaces A: Physicochem. Eng. Aspects ,2003, 220,151-157.
[40]Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties”, J. Phys. Chem. , 1991, 95, 525-532.
[41]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics”, Science, 2005, 307, 538-544.
[42]A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion”, Inorganic Chemistry, 2005, 44, 6893-6899.
[43]Y. F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process”, Applications of Surface Science, 1985, 22-23, 1061–1074.
[44]H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method”, Bull. Mater. Sci., 2004, 27, 85-111.
[45]Y. Tak, S. J. Hong, J. S. Lee and K. Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion”, J. Mater. Chem., 2009, 19, 5945-5951.
[46]W. Lee, S. K. Min, V. Dhas, S. B. Ogale and S. H. Han “Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells”, Electrochemistry Communications, 2009, 11, 103-106.
[47]G. Wang, X. Yang, F. Qian, J. Z. Zhang and Y. Li, “Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation”, Nano Lett., 2010, 10, 1088-1092.
[48]M. Seol, H. Kim, W. Kim, K. Yong, “Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer”, Electrochemistry Communications, 2010, 12, 1416-1418.
[49]http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png
[50]S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”, science, 2002, 297, 2243-2245.
[51]H. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y. Y. Tay and H. J. Fan, “Composition-Graded ZnxCd1-xSe@ZnO Core-Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation”, J. Phys. Chem. C., 2012, 116, 3802-3807.
[52]蕭光宏,二氧化鈦微結構對染料敏化太陽能電池光電效能的影響,碩士論文,國立台灣大學化學系,台北,2008。[53]N. Vlachopoulos, P. Liska, J. Augustynski and M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc., 1988, 110, 1216-1220.