跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林峻民
研究生(外文):Chun-Min Lin
論文名稱:電化學沉積氧化鋅薄膜應用於可撓式染料敏化太陽能電池之研究
論文名稱(外文):Electrochemical deposition of Zinc Oxide Thin Films and Their Application to Flexible Dye-Sensitized Solar Cells
指導教授:余琬琴
口試委員:吳仁彰蔡子萱蘇昭瑾
口試日期:2012-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:染料敏化太陽能電池電化學沉積氧化鋅奈米片鈦基板
外文關鍵詞:dye-sensitized solar cellselectrochemical depositionZnOnanosheettitanium substrate.
相關次數:
  • 被引用被引用:6
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電化學沉積法製備二維氧化鋅奈米片結構,並將其製成染料敏化太陽能電池的工作電極。探討的因子包括電沉積通氧條件、染料種類與膜厚,使用的基板包括玻璃基板與可撓式鈦基板,在鈦基板方面,並探討表面處理對背照式電池效率的影響,基板表面處理方式包含雙氧水處理、拋光處理與高溫鍛燒(500℃)處理,未處理的鈦基板則為對照組,低溫鍛燒的時間則是從1 至24小時。
研究結果顯示,電鍍液通氧經由電化學沉積所得的奈米片是由氧化鋅前驅物構成,該奈米片大多直立於基板上,且相互連結形成網狀結構,並不會改變其形貌。經低溫鍛燒(150℃)後,該前驅物轉化成氧化鋅,而且奈米片上出現許多微小的孔洞。此多孔結構具有高的比表面積,而且直立的奈米片利於電子的傳輸,適合應用於染料敏化太陽能電池。為了決定最佳的鍛燒時間,我們先固定膜厚(9 μm),變化鍛燒時間。結果顯示電沉積通氧條件成功縮短了最佳低溫鍛燒時間,從原本24小時縮短至12小時,在此薄膜厚度(9 μm)下,光電轉換效率可達2.43%。接著,我們固定鍛燒時間(12小時),改變不同染料種類與膜厚。結果顯示,有機釕金屬染料N719敏化下,最佳膜厚為26 μm,光電轉換效率可達3.93%;有機小分子染料D149敏化下,最佳膜厚為15 μm,光電轉換效率可達3.91%。
在鈦基板方面,我們將多孔性奈米片陣列的製備方法應用於鈦基板,鈦板具有低電阻、彈性佳及可撓式的特性,適用於可撓式染料敏化太陽能電池的製備。結果顯示雙氧水與拋光處理之光電轉換效率、光電流密度及填充因子均明顯高於高溫處理與未處理。採雙氧水處理,最佳膜厚為35 μm,背照式光電轉化效率可達2.2%。

In this study ZnO nanoporous films were prepared by using the electrochemical deposition method with oxygen bubbling and fabricated into DSSC photoanodes. The factors investigated included electrodeposition with oxygen bubbling and low-temperature calcination time, organic and inorganic complexes dyes and thickness of the relationship between, flexible titanium substrate surface treatment on the back-illuminated cell efficiency. the choice of three different surface treatments, respectively, hydrogen treatment, polished and high-temperature sintering process, the titanium substrate, compared with untreated control group. The calcination time at 150℃ was varied from 1 to 24 hours.
The results show that the as-deposited precursor nanosheets were roughly vertically aligned with the glass substrate and formed a connecting network with space between them. Calcination at 150℃not only converted the precursor into ZnO, but also generated numerous through pores on the nanosheets. Such a structure should be favorable for photoanode construction, because the porous nanosheets provide a relatively large surface area for dye adsorption, and the vertically standing nanosheets give a direct conduction pathway for electron transport. In order to determine the optimal calcination time at 150℃, the calcination time was varied from 1 to 24 h, while the thickness of the ZnO nanoporous film was maintained at 9 μm. A calcination time of 12 h was found to be optimal, and the highest conversion efficiency achieved with the 9 μm film was 2.43%. The results show the power deposition in oxygen conditions successfully shortened the best low-temperature calcination time shortened from 24 hours to 12 hours. In order to further improve the conversion efficiency, the effect of film thickness on cell efficiency was investigated. The highest conversion efficiency of 3.93% was obtained at a film thickness of 21 μm in inorganic dye-sensitized. The highest conversion efficiency of 3.91% was obtained at a film thickness of 15 μm in organic dye-sensitized.
The ZnO nanoporous films were prepared by using the electrochemical deposition method with oxygen bubbling in the titanium substrate, titanium has a low resistance, good flexibility and flexible features, suitable for the preparation of flexible dye-sensitized solar cells. The results showed that the photoelectric conversion efficiency of hydrogen treatment and polished, the photocurrent density and fill factor were significantly higher than the high temperature treatment and untreated. The highest back-illuminated type photoelectric conversion efficiency of 2.2% was obtained at a film thickness of 35 μm in hydrogen treatment.


摘 要 ................................................... i
Abstract ............................................... iii
誌 謝 .................................................... v
目錄 .................................................... vi
表目錄 .................................................. ix
圖目錄 .................................................. xi
第一章 緒論 .............................................. 1
1.1 前言 ................................................. 1
1.2 研究動機 ............................................. 2
第二章 文獻回顧 .......................................... 3
2.1 太陽能電池簡介 ........................................3
2.2 染料敏化太陽能電池介紹 ............................... 5
2.3染料敏化太陽能電池工作原理 ............................ 6
2.4 染料敏化太陽能電池結構 ............................... 8
2.4.1光陽極及其奈米結構 .................................. 8
2.4.2 染料光敏化劑 ...................................... 12
2.4.3 氧化還原對電解液 .................................. 18
2.4.4 對電極 ............................................ 19
2.5 染料敏化太陽能電池光電轉換效率 ...................... 20
2.5.1 電流電壓輸出特性 .................................. 20
2.5.2 太陽光強度 ........................................ 22
2.5.3電化學阻抗分析 (Electochemical Impedance Spectroscopy,EIS) ................................................... 23
2.6 氧化鋅 .............................................. 30
2.6.1氧化鋅之特性 ....................................... 30
2.6.2氧化鋅之合成方法 ................................... 32
2.6.2.1化學氣相沉積法 (Chemical vapor deposition) ....... 32
2.6.2.2 水熱法 (Hydrothermal Method) .................... 33
2.6.3氧化鋅在DSSC上之應用 ............................... 34
2.7 電化學沉積法 ........................................ 35
2.7.1電沉積法簡介 ....................................... 35
2.7.2電沉積法優勢 ....................................... 36
2.7.3電沉積法生成各式氧化鋅奈米結構 ..................... 36
2.7.3.1 一維結構 ........................................ 37
2.7.3.2 二維結構 ........................................ 38
2.7.3.3 複合式與其它多孔性結構 .......................... 41
2.7.4 燒結的影響 ........................................ 43
2.8 電沉積氧化鋅奈米結構應用在DSSC上 .................... 44
2.8.1 高溫(>150℃)熱處理製程............................. 44
2.8.2 低溫(≦150℃)熱處理製程 ........................... 46
第三章 實驗儀器及方法 ................................... 48
3.1 實驗藥品 ............................................ 48
3.2 實驗儀器與設備 ...................................... 50
3.2.1 一般實驗儀器 ...................................... 50
3.2.2 量測設備 .......................................... 50
3.3 實驗方法 ............................................ 53
3.3.1 實驗流程 .......................................... 53
3.3.2 電化學沉積氧化鋅奈米片 ............................ 54
3.3.3 燒結溫度與時間 .................................... 56
3.4 染料敏化太陽能電池元件組裝 .......................... 57
3.4.1 電池元件組裝流程 .................................. 57
3.4.2 氧化鋅工作電極製備 ................................ 58
3.4.3 染料溶液配置與電解液配置 .......................... 58
3.4.4 對電極製備 ........................................ 58
3.4.5 電池元件封裝 ...................................... 59
第四章 結果與討論 ....................................... 60
4.1通氧電化學沉積氧化鋅奈米片 ........................... 60
4.1.1 奈米片狀之表面形態 ................................ 60
4.1.2奈米片狀之特性鑑定 ................................. 61
4.1.3通氧/未通氧電沉積與鍛燒時間之元素分析特性 .......... 62
4.2 正照光FTO基板之氧化鋅奈米片低溫製程 ................. 63
4.2.1 表面形貌 .......................................... 63
4.2.2 特性鑑定........................................... 66
4.2.3電化學沉積時間與膜厚關係 ........................... 67
4.2.4 燒結時間與元件效率的表現 .......................... 68
4.2.5染料N719對元件效率的影響 ........................... 69
4.2.6染料D149對元件效率的影響 ........................... 73
4.3背照光鈦基板之氧化鋅奈米片低溫製程 ................... 76
4.3.1 不同前處理基板之表面形貌 .......................... 76
4.3.2 不同前處理基板之特性鑑定 .......................... 79
4.3.3不同前處理基板沉積後之表面形貌 ..................... 80
4.3.4不同前處理基板方法與元件效率的表現 ................. 82
4.3.5最佳化前處理基板方法對元件效率的影響 ............... 83
4.3.6最佳前處理基板之元件電子傳輸特性比較 ............... 87
第五章 結論 ............................................. 90
參考文獻 ................................................ 91

1. J. Pelly, “Solar cells that harness infrared light”, Environmental Science and Technology, 39, 2005, 151A-152A.
2. T. Z. Ramon, E. Jamil, L. C. Claude, B. Chegnui, V. Tobias, M. S. Iván and B. Juan, “Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays”, J. Phys. Chem. C, 112, 2008, 16318-16323.
3. C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, J. M. Wu, “Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates”, J. Mater. Chem., 21, 2011, 5114-5119.
4. M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 2001, 338-344.
5. 王釿鋊,淺談薄膜式光電池,中技社通訊,2005,59,6-9 。
6. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells ”, J. Photochem. Photobiol., A, 164, 2004, 3-14.
7. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle , J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”. ACS Nano, 3, 2009, 3103-3109.
8. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency” Science, 334, 2011, 629-633.
9. 李佳樺,染料敏化太陽電池工業化國際會議紀要(上),工業材料4月刊,2011,292,94-99。
10. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 1996, 119-155.
11. G. P. Smestad, M. Grätzel, “Demonstrating electron transfer and nanotechnology: a nature dye-sensitized nanocrystalline energy converter”, J. Chem. Educ., 75, 1998, 752-756.
12. M. Grätzel, “Applied physics: Solar cells to dye for”, Nature, 421, 2003, 586-587.
13. A. Kay, M. Grätzel, “Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins”, J. Phys. Chem., 97, 1993, 6272-6277.
14. M. K. Nazeeruddin, A. Kay, 1. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-XzBis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. SOC, 115, 1993, 6382-6390.
15. K. Onoda, S. Ngamsinlapasathian, T. Fujieda and S. Yoshikawa, “The superiority of Ti plate as the substrate of dye-sensitized solar cells” Sol. Energy Mater. Sol. Cells, 91, 2007, 1176.
16. Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, “ZnO nanostructures for dye-sensitized solar cells”, Adv. Mater., 21, 2009, 4087–4108.
17. J. Nelson, The Physics of Solar Cells, Imperial College Press;Distributed by World Scientific Pub. Co., London River Edge, 2003.
18. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitized zinc oxide:aqueous electrolyte:platinum photocell”, Nature, 261, 1976, 402-403.
19. A. Turkovic, Z. Orel Crnjak, “Dye-sensitized solar cell with CeO2 and mixed CeO2SnO2 photoanodes” Sol. Energy Mater. Sol. cells, 45, 1997, 275.
20. B. O''Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 1991, 737-740.
21. C. Cheng, J. Wu, Y. Xiao, Y. Chen, L. Fan, M. Huang, J. Ling, J. Wang, Z. Tang, G. Yue, “Polyvinyl pyrrolidone aided preparation of TiO2 films used in flexible dye-sensitized solar cells”, Electrochimica Acta, 56, 2011, 7256-7260.
22. Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, “The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells”, Electrochimica Acta, 55, 2010, 4573-4578.
23. K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, N. G. Park, “Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell”, Journal of Photochemistry and Photobiology A: Chemistry, 204, 2009, 144–147.
24. H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, J. Power Sources, 195, 2011, 6225-6231.
25. T. Miyasaka, M. Ikegami, Y. Kijitori, “Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania”, J. Electrochem. Soc., 154, 2007, A455-A461.
26. F. Xu, M. Dai, Y. Lu, L. Sun, “Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells”, J. Phys. Chem. C, 114, 2010, 2776-2782.
27. 劉茂煌,奈米光電池,工業材料雜誌2003,203期,93。
28. T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson. X. Ai, T. Lian, S. Yanagida, “Phenyl-conjugated oligoene sensitizers for TiO2 solar cells”, Chem. Mater. 16, 2004, 1806.
29. K. Hara, K. MIYAMOTO, Y. Abe, M. Yanagida, “Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes”, J. Phys. Chem. B, 109, 2005, 23776.
30. T. Horiuchi, H. Miuraa, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commum., 2003, 3036.
31. S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, C. Kim, “A highly efficient organic sensitizer for dye-sensitized solar cells”, Chem. Commun., 2007, 4887.
32. M. Grätzel, “The Story of Solar Electricity”, Nature, 403, 2000, 363.
33. A. Kay, M. Grätzel, “Artificial photosynthesis. 1. photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins”, J. Phys. Chem., 97, 1993, 6272.
34. J. Ferber, M. Hilgendorff, A. P. Yartsev, V. Sundstrom, “Modeling of photovoltage and photocurrent in dye-sensitized titanium dioxide solar cells”, J. Phys. Chem. B, 105, 2001, 4895.
35. G.Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the effciency of redox shuttles in dye sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 85, 2001, 101.
36. P. J. Cameron, L. M. Peter, S. M. Zakeeruddin, “Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells”, Coord Chem Rev., 248, 2004, 1447-1453.
37. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, “Nanowire dye-sensitized solar cells”, Nat. mater., 4, 2005, 455-459.
38. S. Chappel, S. G. Chen, A. Zaban, “TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells”, Langmuir, 18, 2002, 3336-3342.
39. K. Sayama, H. Sugihara, H. Arakawa, “Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye”, Chem. Mater., 10, 1998, 3825-3832.
40. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gätzel,“Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-densitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107, 2003, 8981.
41. 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司,1997。
42. W. H. Chiu, C. H. Lee, H. M. Cheng, H. F. Lin, S. C. Liao, J. M. Wu, W. F. Hsieh, “Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells”, Energy Environ. Sci., 2, 2009, 694–698.
43. J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer”, J. Phys. Chem. B, 106, 2002, 325.
44. M. K. Nazeeruddin, P. P’echy, M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex”, Chem. Commun., 18, 1997, 1705-1706.
45. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Sellon, G. Viscardi , P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc.,127, 2005, 16835-16847.
46. S. Ezhilvalavan and T.R N. Kutty, “High-frequency capacitance resonance of ZnO-based varistor ceramics”, Appl. Phys. Lett., 69, 1996, 3540-3542.
47. X. L. Guo, H. Tabata and T. Kawai, “Epitaxial growth and optoelectronic properties of nitrogendoped ZnO films on (1 1 0) Al2O3 substrate”, J. Cryst. Growth, 237, 2002, 544-547.
48. A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang,“Growth mechanism of tubular ZnO formed in aqueous solution”, Nanotechnology, 17, 2006, 1740-1744.
49. T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, M. A. Rodriguez, T. J. Headley,“Precursor structural influences on the final ZnO nanoparticle morphology from a novel family of structurally characterized zinc alkoxy alkyl precursors”, Chem. Mater., 16, 2004, 3279-3288.
50. D. C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng., B, 80, 2001, 383-387.
51. W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu, D. Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett., 71, 1997, 548-550.
52. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya,“Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3-Zn2+) aggregate formation”, J. Phys. Chem. B, 107, 2003, 2570-2574.
53. K. Keis, J. Lindgren, S. E. Lindquist and A. Hagfeldt, “Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes”, Langmuir, 16, 2000, 4688-4694.
54. P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method”, Chem. Mater., 16, 2004, 5133-5137.
55. M. Izaki, T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction”, Appl. Phys. Lett, 68, 1996, 2439-2440.
56. S. Peulon, D. Lincot, “Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films”, Adv. Mater., 8, 1996, 166-170.
57. O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells”, J. Photochem. Photobiol. A , 211, 2010, 65–73.
58. R. Tena-Zaera, J. Elias, C. L vy-Cl ment, C. Bekeny, T. Voss, I. Mora-Ser , J. Bisquert, “Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire Arrays”, J. Phys. Chem. C, 112, 2008, 16318-1632.
59. D. Pradhan, K. T. Leung,“Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition”, Langmuir, 24, 2008, 9707-9716.
60. D. Pradhan, Z. Su, S. Sindhwani, J. F. Honek, K. T. Leung, “Electrochemical growth of ZnO nanobelt-like structures at 0℃:synthesis, characterization, and in-Situ glucose oxidase embedment”, J. Phys. Chem. C, 115, 2011, 18149–18156.
61. M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, J. Zhang, “ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition”, Adv. Mater., 18, 2006, 1001–1004.
62. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, B. Zou, “The optical properties of ZnO sheets electrodeposited on ITO glass”, Mater. Lett., 61, 2007, 2000-2003.
63. D. Pradhan, K. T. Leung, “Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time”, J. Phys. Chem. C, 112, 2008, 1357-1364.
64. J. Qiu, M. Guo, Y. Feng, X. Wang, “Electrochemical deposition of branched hierarchical ZnO nanowire arrays and its photoelectrochemical properties”, Electrochim. Acta, 56, 2011, 5776-5782.
65. V. M. Guérin, T. Pauporté, “From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells”, Energy Environ. Sci., 4, 2011, 2971–2979.
66. V. M. Guérin, C. Magne, T. Pauporté, T. L. Bahers, J. Rathousky, “Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. Appl. Mater. Inter., 12, 2010, 3677–3685.
67. Z. Chen, Y. Tang, L. Zhang, L. Luo, “Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells”, Electrochim. Acta , 51, 2006, 5870–5875.
68. D. Pradhan and K. T. Leung, “Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition”, Langmuir, 24, 2008, 9707-9716.
69. F. Xu, M. Dai, Y. Lu, L. Sun, “Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells”, J. Phys. Chem. C, 114, 2010, 2776-2782.
70. J. Qiu, M. Guo, X. Wang, “Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells”, Appl. Mater. Inter., 3, 2011, 2358–2367.
71. Z. Liu, Z. Jin, W. Li, X. Liu, J. Qiu, W. Wu, “Preparation of porous ZnO plate crystal thin films by electrochemical deposition using PS template assistant”, Mater. Lett., 60, 2006, 810–814.
72. 蔡季洋,氧化鋅奈米片的製備及其在染料敏化太陽能電池之應用,碩士論文,國立臺北科技大學,台北, 2011。
73. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q, Meng, J. Li, Q Li, Y. Wang, T. Wang, B. Zou, “The optical properties of ZnO sheets electrodeposited on ITO glass”, Mater. Lett., 61, 2007, 2000-2003.
74. L. Y. Lin, M. H. Yeh, C. P. Lee, C. Y. Chou, R. Vittal, K. C. Ho, “Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles”, Electrochim. Acta , 62, 2012, 341–347.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top