跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊榮
研究生(外文):Chun-Jung Chen
論文名稱:製備金/二氧化鈦奈米顆粒應用於催化一氧化碳氧化反應
論文名稱(外文):The Preparation of Au/TiO2 Nanoparticles for Catalytic CO Oxidation
指導教授:蘇昭瑾
口試委員:吳春桂簡淑華林景泉
口試日期:2012-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:二氧化鈦奈米金觸媒一氧化碳含金廢液
外文關鍵詞:Titanium DioxideGold nanoparticle catalystCarbon monoxideWastewater
相關次數:
  • 被引用被引用:6
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要分為兩部分。第一部分結合傳統沉澱沉積法的較高合成穩定性與光還原法的較短的反應週期之優點,開發一新合成法「光輔助沉澱沉積法」,此一新合成法所製備出之金/二氧化鈦奈米顆粒應用於一氧化碳的氧化反應有較高催化效率。 穿透式電子顯微鏡 (TEM) 的數據顯示,在適當的反應條件下,金沉積在二氧化鈦奈米顆粒上的粒徑為3-5 nm間。吸附於TiO2表面之金離子,在UV光照射下之金屬化(metallization)成核過程係透過UV-Vis吸收光譜儀進行探討。此外,本研究應用實驗設計法分析控制因子之間的關係及意義,其中包含照光波長、照光強度、照光時間及乙醇添加量等進行分析,並找出最佳之實驗參數。實驗中利用氣相層析儀 (GC) 與微分熱掃描卡計檢測一氧化碳的轉化率,本研究所合成之Au/TiO2於室溫25 °C下,可達85 % 以上之一氧化碳轉換效果。本研究之第二部分係透過3C含金廢液作為金前驅物來源,並搭配第一部分研究的實驗設計法所得之最佳合成參數,進一步探討不同濃度的含金廢液對Au/TiO2觸媒催化效果之影響。最後,本研究利用全反射式螢光光譜儀 (TXRF) 之進行元素半定量分析,以了解廢液中金離子與其他金屬沉積於TiO2表面之情形。

This study was separated into two parts. The first part of the study focused on synthesizing gold/titanium dioxide (Au/TiO2) nanoparticle as a catalyst for CO oxidation at room temperature. We have developed a photo-assisted deposition-precipitation (PA-DP) method which combined the advantages of deposition precipitation with better stability and photodeposition method with short reaction period to synthesis Au/TiO2 nanoparticle with high efficiency toward the CO conversion to CO2. The result of Transmission Electron Microscopy (TEM) shows that the size of Au deposited on TiO2 nanoparticles is in the range of 3-5 nm under the appropriate reaction condition. UV-Vis spectroscopy was used to monitor the photometallization and growth of gold nanoparticles. The absorbance band of Au approached the maximum after ~15 minutes UV light irradiation . In addition, design of experiment (DOE) is applied to analyze the correlation and significance of the control factors, including the wavelength of irradiation light, the light intensity, the irradiation time and the concentration of hole scavenger (ethanol). The CO conversion efficiency was monitored by both Differential Scanning Caloremeter (DSC) and Gas Chromatography (GC) techniques. In the second part of this study, gold-bearing wastewater from the 3C recycled wastes was the source of gold precursor. The optimal parameters obtaining from the first part of study was applied and investigated for samples of wastewater with different gold concentration.

中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 2
1.3. 金觸媒簡介 2
1.4. 金觸媒發展歷史 3
1.5. 影響金觸媒催化重要因素 4
1.5.1 金粒徑大小 4
1.5.2 製備方式 5
1.5.3 pH值影響 7
1.5.4 金前驅物濃度的影響 11
1.5.5 氯離子的影響 12
1.5.6 載體效應與金粒子形狀 12
1.6. 金觸媒催化一氧化碳氧化反應 14
1.6.1 氧的吸附 14
1.6.2 水的效應 14
1.6.3 一氧化碳氧化反應機制 16
1.7. 實驗設計法 19
第二章 實驗系統 22
2.1 實驗藥品材料 22
2.2 實驗儀器 23
2.3 實驗儀器介紹 24
2.3.1 光催化槽 24
2.3.2 全反射螢光光譜儀 ( TXRF ) 25
2.3.3 氣相分析儀 26
2.3.4 穿透式電子顯微鏡 ( TEM ) 27
2.3.5 微分掃描式熱分析儀 ( DSC ) 29
2.3.6 紫外光可見光光譜儀 30
2.3.7 真空系統傅立葉轉換紅外光譜儀 31
2.3.8 實驗設計法 33
第三章 實驗步驟 34
3.1 光輔助沉澱沉積法 34
3.2 真空系統傅立葉轉換紅外光譜儀實驗 36
3.3 微分掃描式熱分析儀 38
3.4 一氧化碳催化實驗 39
第四章 結果與討論 42
4.1 觸媒特性鑑定 42
4.1.1 傅立葉轉換紅外光譜 42
4.1.2 微分掃描式熱差儀 ( DSC ) 43
4.1.3 穿透式電子顯微鏡 47
4.1.4 紫外/可見光譜(UV-vis) 55
4.1.5 全反射式螢光光譜儀(TXRF) 60
4.2 一氧化碳氧化反應測試 63
4.3 樣品合成之最佳化參數 70
4.4 3C廢棄物含金廢液回收應用 72
4.4.1 先期研究 72
4.4.2 含金廢液成分分析 73
4.4.3 含金廢液製備Au/TiO2觸媒特性鑑定 78
第五章 結論 86
參考文獻 88



[1] 內政部消防署, ''一氧化碳影響人體之嚴重性'', http://www.nfa.gov.tw/main/Unit.aspx?ID=&MenuID=500&ListID=316
[2] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal. 115 (1989) 301.
[3] G. C. Bond, “Gold: a relatively new catalyst”, Catal. Today 72 (2002) 5.
[4] G. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts”, J. Catal. 96 (1985) 292.
[5] L. Prati, M. Rossi, “Gold on carbon as a new catalyst for selective liquid phase oxidation of diols”, J. Catal. 176 (1998) 552.
[6] A. Corma, P. Serna, “Chemoselective hydrogenation of nitro compounds with supported gold catalysts”, Science 313 (2006) 332.
[7] N. R. Shiju, V. V. Guliants, “Recent developments in catalysis using nanostructured materials”, Applied Catalysis A: General 356 (2009) 1.
[8] M. Comotti, C. D. Pina, R. Matarrese, M. Rossi, A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars”, Applied Catalysis A: General 291 (2005) 204.
[9] L. Prati, F. Porta, “Oxidation of alcohols and sugars using Au/C catalysts: Part 1. Alcohols”, Applied Catalysis A: General 291 (2005) 199.
[10] M. Haruta, M. Date, “Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General 222 (2001) 427.
[11] Y. F. Yang, P. Sangeetha, Y. W. Chen, “Au/FeOx-TiO2 catalysts for the preferential oxidation of CO in a H2 stream”, Ind. Eng. Chem. Res. 48 (2009) 10402.
[12] L. Guczi, A. Beck, Z. Paszti, “Gold catalysis: Effect of particle size on reactivity towards various substrates”, Catal. Today (Article in Press ).
[13] S. Tsubota, D. A. H. Cunningham, Y. Bando, M. Haruta, “Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO”, 91 (1995) 227.
[14] A. I. Kozlov, A. P. Kozlova, H. Liu, Y. Iwasawa, “A new approach to active supported Au catalysts”, Applied Catalysis A: General 182 (1999) 9.
[15] P. Sangeetha, L. H. Chang, Y. W. Chen, “Preferential oxidation of CO in H2 stream on Au/TiO2 Catalysts: Effect of preparation method”, Ind. Eng. Chem. Res. 48 (2009) 5666.
[16] C. Bianchi, F. Porta, L. Prati, M. Rossi, “Selective liquid phase oxidation using gold catalysts”, Top. Catal. 13 (2000) 231.
[17] 王昱琨, “FTIR偵測二氧化鈦與有毒分子的氣-固相反應”, 國立臺北科技大學 (2010)。
[18] H. H. Kung, M. C. Kung, C. K. Costello, “Supported Au catalysts for low temperature CO oxidation”, J. Catal. 216 (2003) 425.
[19] F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents”, J. Catal. 231 (2005) 105.
[20] M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catal. Today 36 (1997) 153.
[21] Y. F. Yang, P. Sangeetha, Y. W. Chen, “Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream”, Int. J. Hydrogen Energy 34 (2009) 8912.
[22] S. Ivanova, C. Petit, V. Pitchon, “A new preparation method for the formation of gold nanoparticles on an oxide support”, Applied Catalysis A: General 267 (2004) 191.
[23] H. H. Kung, M. C. Kung, H. S. Oh, J. H. Yang, C. K. Costello, “Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts”, J. Catal. 210 (2002) 375.
[24] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides”, CATTECH 6 (2002) 102.
[25] J. Llorca, M. Dominguez, C. Ledesma, R. J. Chimentao, F. Medina, J. Sueiras, I. Angurell, M. Seco, O. Rossell, “Propene epoxidation over TiO2-supported Au-Cu alloy catalysts prepared from thiol-capped nanoparticles”, J. Catal. 258 (2008) 187.
[26] H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, “Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide”, J. Catal. 185 (1999) 252.
[27] M. Olea, M. Kunitake, T. Shido, Y. Iwasawa, “TAP study on CO oxidation on a highly active Au/Ti (OH)4* catalyst”, PCCP 3 (2001) 627.
[28] M. M. Schubert, S. Hackenberg, A. C. Van Veen, M. Muhler, V. Plzak, R. J. Behm, “CO oxidation over supported gold catalysts -"Inert" and "active" support materials and their role for the oxygen supply during reaction”, J. Catal. 197 (2001) 113.
[29] M. Date, M. Haruta, “Moisture effect on CO oxidation over Au/TiO2 catalyst”, J. Catal. 201 (2001) 221.
[30] M. Ojeda, B. Z. Zhan, E. Iglesia, “Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters”, J. Catal. 285 (2012) 92.
[31] C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung, “On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3”, Applied Catalysis A: General 243 (2003) 15.
[32] J. T. Calla, R. J. Davis, “Influence of dihydrogen and water vapor on the kinetics of CO oxidation over Au/Al2O3”, Ind. Eng. Chem. Res. 44 (2005) 5403.
[33] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175.
[34] M. A. Bollinger, M. A. Vannice, “A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts”, Applied Catalysis B: Environmental 8 (1996) 417.
[35] 吳欣恩, 碩士論文, “利用實驗設計法探討金觸媒在一氧化碳催化反應之影響因子”, 國立臺北科技大學 (2006)。
[36] G. Srinivas, J. Wright, C. S. Bai, R. Cook. (1996), vol. 101 A, pp. 427-433.
[37] J. D. Grunwaldt, A. Baiker, “Gold/titania interfaces and their role in carbon monoxide oxidation”, J. Phys. Chem. B 103 (1999) 1002.
[38] D. Widmann, R. J. Behm, “Active oxygen on a Au/TiO2 catalyst: Formation, stability, and CO oxidation activity”, Angewandte Chemie - International Edition 50 (2011) 10241.
[39] Montgomery, 實驗設計與分析. 黎正中、陳源樹譯, Ed., 高立圖書有限公司 (2006)。
[40] D. C. Montgomery, Design and Analysis of Experiment. (John Wiley & Sons,Inc, Singapore, ed. 5th, 1997).
[41] 徐國彬, 碩士論文, “以溶膠凝膠法製備非冷卻型紅外光感測薄膜V1-x-yWxSiyOz之光學及電性性質研究”, 國立臺北科技大學 (2004)。
[42] 郭振源, 有機光譜學. (國立圖書有限公司, 2004)。
[43] M. A. Bollinger, M. A. Vannice, “A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO, catalysts”, Appl. Catal., B 8 (1996) 417.
[44] M. A. Debeila, N. J. Coville, M. S. Scurrell, G. R. Hearne, “DRIFTS studies of the interaction of nitric oxide and carbon monoxide on Au-TiO2”, Catal. Today 72 (2002) 79.
[45] G. Smit, N. Strukan, W. J. Craje Menno, “A comparative study of CO adsorption and oxidation on Au/Fe2O3 catalysts by FT-IR and in situ DRIFTS spectroscopies”, J. Mol. Catal. A: Chem. 252 (2006) 163.
[46] K. Tanaka, J. M. White, “Characterization of species adsorbed on oxidized and reduced anatase”, J. Phys. Chem. 86 (1982) 4708.
[47] D. J. C. Yates, “Infrared Studies of The Surface Hydroxyl Groups on Titanium Dioxide, and of The Chemisorption of Carbon Monoxide and Carbon Dioxide”, J. Phys. Chem. 65 (1960) 746.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊