|
參考文獻
1.Roubroeks, J.P., Andersson, R., and Aman, P. (2000). Structural features of (1→3),(1→4)-β-D-glucan and arabinoxylan fractions isolated from rye bran. Carbohydrate Polymers 42, 3-11. 2.Tosh, S.M., Wood, P.J., Wang, Q., and Weisz, J. (2004). Structural characteristics and rheological properties of partially hydrolyzed oat β-glucan: the effects of molecular weight and hydrolysis method. Carbohydrate Polymers 55, 425-436. 3.Papageorgiou, M., Lakhdara, N., Lazaridou, A., Biliaderis, C.G., and Izydorczyk, M.S. (2005). Water extractable (1→3,1→4)-β-D-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. Journal of Cereal Science 42, 213-224. 4.Collins, T., Gerday, C., and Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29, 3-23. 5.Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 280(Pt 2), 309-316. 6.Henrissat, B., and Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293(Pt 3), 781-788. 7.Vasur, J., Kawai, R., Andersson, E., Igarashi, K., Sandgren, M., Samejima, M., and Stahlberg, J. (2009). X-ray crystal structures ofPhanerochaete chrysosporiumLaminarinase 16A in complex with products from lichenin and laminarin hydrolysis. FEBS Journal 276, 3858-3869. 8.Bohm, N., and Kulicke, W.-M. (1999). Rheological studies of barley (1→3)(1→4)-β-glucan in concentrated solution: mechanistic and kinetic investigation of the gel formation. Carbohydrate Research 315, 302-311. 9.Tosh, S.M., Brummer, Y., Wood, P.J., Wang, Q., and Weisz, J. (2004). Evaluation of structure in the formation of gels by structurally diverse (1→3)(1→4)-β-D-glucans from four cereal and one lichen species. Carbohydrate Polymers 57, 249-259. 10.Vincken, J.-P., Schols, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., and Visser, R.G.F. (2003). If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture. Plant Physiology 132, 1781-1789. 11.Agoub, A.A., Giannouli, P., and Morris, E.R. (2009). Gelation of high methoxy pectin by acidification with D-glucono-δ-lactone (GDL) at room temperature. Carbohydrate Polymers 75, 269-281. 12.Doublier, J.-L., and Wood, P.J. (1995). Rheological properties of aqueous solutions of (1 → 3)(1 → 4)-β-D-glucan from oats (Avena sativa L.). Cereal Chemistry 72, 335–340. 13.Woodward, J.R., Phillips, D.R., and Fincher, G.B. (1983). Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers 3, 207-225. 14.Cui, W., Wood, P.J., Blackwell, B., and Nikiforuk, J. (2000). Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—comparison with other cereal β-D-glucans. Carbohydrate Polymers 41, 249-258. 15.Tvaroska, I., Ogawa, K., Deslandes, Y., and Marchessault, R.H. (1983). Crystalline conformation and structure of lichenan and barley β-glucan. Canadian Journal of Chemistry 61, 1608-1616. 16.Jensen, M.S., Bach Knudsen, K.E., Inborr, J., and Jakobsen, K. (1998). Effect of β-glucanase supplementation on pancreatic enzyme activity and nutrient digestibility in piglets fed diets based on hulled and hulless barley varieties. Animal Feed Science and Technology 72, 329-345. 17.Humbert-Goffard, A., Saucier, C., Moine-Ledoux, V., Canal-Llauberes, R.-M., Dubourdieu, D., and Glories, Y. (2004). An assay for glucanase activity in wine. Enzyme and Microbial Technology 34, 537-543. 18.Garry, B.P., Fogarty, M., Curran, T.P., and O''Doherty, J.V. (2007). Effect of cereal type and exogenous enzyme supplementation in pig diets on odour and ammonia emissions. Livestock Science 109, 212-215. 19.Leek, A.B.G., Callan, J.J., Reilly, P., Beattie, V.E., and O’Doherty, J.V. (2007). Apparent component digestibility and manure ammonia emission in finishing pigs fed diets based on barley, maize or wheat prepared without or with exogenous non-starch polysaccharide enzymes. Animal Feed Science and Technology 135, 86-99. 20.Koolman, J., and Roehm, K.H. (2008). Color atlas of biochemistry, 2nd edition Edition. 21.Trinci, A.P.J., Davies, D.R., Gull, K., Lawrence, M.I., Bonde Nielsen, B., Rickers, A., and Theodorou, M.K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98, 129-152. 22.Teather, R.M., and Erfle, J.D. (1990). DNA sequence of a Fibrobacter succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) gene. Journal of Bacteriology 172(7), 3837-3841. 23.Chen, H., Li, X.-L., and Ljungdahl, L.G. (1997). Sequencing of a 1,3-1,4-β-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. Journal of Bacteriol 179(19), 6028-6034. 24.Tsai, L.-C., Shyur, L.-F., Cheng, Y.-S., and Lee, S.-H. (2005). Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4-β-D-Glucanase in Complex with β-1,3-1,4-Cellotriose. Journal of Molecular Biology 354, 642-651. 25.Tsai, L.-C., Shyur, L.-F., Lee, S.-H., Lin, S.-S., and Yuan, H.S. (2003). Crystal Structure of a Natural Circularly Permuted Jellyroll Protein: 1,3-1,4-β-D-Glucanase from Fibrobacter succinogenes. Journal of Molecular Biology 330, 607-620. 26.Chen, J.-L., Tsai, L.-C., Wen, T.-N., Tang, J.-B., Yuan, H.S., and Shyur, L.-F. (2001). Directed Mutagenesis of Specific Active Site Residues on Fibrobacter succinogenes 1,3-1,4-β-D-Glucanase Significantly Affects Catalysis and Enzyme Structural Stability. Journal of Biological Chemistry 276, 17895-17901. 27.Sulzenbacher, G., Driguez, H., Henrissat, B., Schulein, M., and Davies, G.J. (1996). Structure of the Fusarium oxysporum Endoglucanase I with a Nonhydrolyzable Substrate Analogue: Substrate Distortion Gives Rise to the Preferred Axial Orientation for the Leaving Group. Biochemistry 35, 15280-15287. 28.Davies, G.J., Mackenzie, L., Varrot, A., Dauter, M., Brzozowski, A.M., Schulein, M., and Withers, S.G. (1998). Snapshots along an Enzymatic Reaction Coordinate: Analysis of a Retaining β-Glycoside Hydrolase. Biochemistry 37, 11707-11713. 29.Planas, A. (2000). Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1543, 361-382. 30.Malet, C., and Planas, A. (1998). From β-glucanase to β-glucansynthase: glycosyl transfer to α-glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile. FEBS Letters 440, 208-212. 31.Erfle, J.D., Teather, R.M., Wood, P.J., and Irvin, J.E. (1988). Purification and properties of a 1,3-1,4-β-D-glucanase (lichenase, 1,3-1,4-β-D-glucan 4-glucanohydrolase, EC 3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochemical journal 255(3), 833-841. 32.Kumagai, Y., and Ojima, T. (2009). Enzymatic properties and the primary structure of a β-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 154, 113-120. 33.Kawai, R., Igarashi, K., Yoshida, M., Kitaoka, M., and Samejima, M. (2005). Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 71, 898-906. 34.Cui, S.W., and Wang, Q. (2009). Cell wall polysaccharides in cereals: chemical structures and functional properties. Structural Chemistry 20, 291-297. 35.Chen, J.-H., Tsai, L.-C., Huang, H.-C., and Shyur, L.-F. (2010). Structural and catalytic roles of amino acid residues located at substrate-binding pocket in Fibrobacter succinogenes 1,3-1,4-β-D-glucanase. Proteins: Structure, Function, and Bioinformatics 78, 2820-2830. 36.Lin, Y.-S., Tsai, L.-C., Lee, S.-H., Yuan, H.S., and Shyur, L.-F. (2009). Structural and catalytic roles of residues located in β13 strand and the following β-turn loop in Fibrobacter succinogenes 1,3-1,4-β-D-glucanase. Biochimica et Biophysica Acta (BBA) - General Subjects 1790, 231-239. 37.Nelson, D.L., and Cox, M.M. (2005). Principles of Biochemistry, fourth edition Edition. 38.Margui, E., Queralt, I., and Hidalgo, M. (2009). Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trends in Analytical Chemistry 28, 362-372. 39.Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31, 426-428. 40.Cortes, A., Cascante, M., Cardenas, M.L., and Cornish-Bowden, A. (2001). Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition : new ways of analysing data. Biochemical journal 357(Pt 1), 263-268. 41.Tsai, L.-C., Hsiao, C.-H., Liu, W.-Y., Yin, L.-M., and Shyur, L.-F. (2011). Structural basis for the inhibition of 1,3-1,4-β-D-glucanase by noncompetitive calcium ion and competitive Tris inhibitors. Biochemical and Biophysical Research Communications 407, 593-598. 42.Walti, M., Roulin, S., and Feller, U. (2002). Effects of pH, light and temperature on (1→3,1→4)-β-glucanase stability in wheat leaves. Plant Physiology and Biochemistry 40, 363-371. 43.Zhang, X.-y., Ruan, H., Mu, L., He, G.-q., Tang, X.-j., and Chen, Q.-h. (2006). Enhancement of the thermostability of β-1,3-1,4-glucanase by directed evolution. Journal of Zhejiang University Science A 7, 1948-1955. 44.Price, A.C., Zhang, Y.-M., Rock, C.O., and White, S.W. (2004). Cofactor-Induced Conformational Rearrangements Establish a Catalytically Competent Active Site and a Proton Relay Conduit in FabG. Structure 12, 417-428.
|