跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉瀚之
研究生(外文):Han-Chih Liu
論文名稱:微網誌訊息影響力分析及回應意見評價之研究
論文名稱(外文):Short Message Influence and Response Opinion Analysis in Microblog
指導教授:王正豪王正豪引用關係
口試委員:楊凱翔劉傳銘
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:58
中文關鍵詞:影響力分析情緒分析微網誌社群媒體探勘熱門主題偵測
外文關鍵詞:Influence AnalysisSentiment AnalysisMicroblogSocial Media MiningHot Topic Detection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
微網誌是一個新興的社群互動平台,能立即反應使用者當時的心情,具有即時性,但因為其內容長度限制,通常會在短時間內產生大量簡短的訊息。這樣的微網誌社群具有兩項問題:第一,大量訊息之間會有各自的討論主題,並非所有使用者都有興趣,這讓使用者難以閱讀自己真正有興趣的訊息。第二,其內容字數的限制,使每則訊息涵蓋的資訊過於稀疏,這讓使用者難以分辨訊息的重要性和可靠性。
為了解決上述問題,本論文導入影響力分析和意見分析探討微網誌社群,我們提出一影響力模型,以回應、轉載等社群結構關係,分析訊息的影響力。其次我們提出一意見模型,根據訊息的內容,偵測熱門主題與訊息,以分析訊息回應的意見傾向。
實驗以Plurk的中文訊息為主,藉由文件分類與實際案例來觀察所提方法之效果。實驗結果顯示影響力分析可以有效分類出流行訊息,其最佳的F-measure為86%;而意見分析可以有效偵測使用者對於熱門事件的喜好程度,以2012台灣總統選舉支持率預測為例,其預測的平均絕對誤差為1.26%,準確度為98.74%,證實本論文提出方法可以有效分析微網誌訊息。

With the popularity of microblog as a new social communication platform, users can easily share their feelings and opinions within 140 characters, which have attracted many research efforts. There are some issues for microblogs. First, users tend to write many short messages in different topics, which make other users difficult to find topics that really interest them. Second, each message is limited to 140 characters, so users are difficult to get vital and reliable messages that they need.
In this paper, we designed two novel models on Plurk: influence analysis model, and opinion analysis model. First, influence score is calculated from the number of replurks, responses, and likes. Then, hot topics are identified from popular messages and net opinions from responses are accumulated as the overall rating. Our experimental results show a high F-measure of 86%, for classifying popular discussions with influence score. In the case of the Taiwan presidential election forecast, the MAE of prediction is 1.26%, which shows the effectiveness of the proposed approach.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究對象 4
1.4 研究貢獻 6
1.5 論文架構 6
第二章 相關研究 7
2.1 微網誌社群 7
2.2 微網誌與事件偵測 8
2.3 微網誌與選舉 9
2.4 微網誌與意見分析 10
第三章 研究方法 12
3.1 方法架構 12
3.2 影響力模型 13
3.2.1 影響力分析 13
3.2.2 短訊息分類 16
3.3 意見模型 17
3.3.1 熱門主題偵測與訊息檢索 17
3.3.2 意見分析 19
第四章 實驗結果 22
4.1 實驗架構 22
4.2 實驗環境 22
4.3 實驗資料 22
4.4 實驗前處理 23
4.5 實驗評估指標 24
4.6 影響力模型實驗 24
4.6.1 影響力實驗說明 25
4.6.2 影響力實驗結果 26
4.6.3 影響力實驗討論 29
4.7 意見模型實驗 34
4.7.1 意見實驗說明 34
4.7.2 熱門主題偵測與訊息檢索 35
4.7.3 意見實驗結果 38
4.7.4 意見實驗討論 42
第五章 結論與未來展望 46
參考文獻 48
附錄A Plurk訊息中英文對照表 55

[1]Akshay Java, Xiaodan Song, Tim Finin, Belle Tseng, "Why We Twitter: Understanding Microblogging Usage and Communities," Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, 2007, pp.56-65.
[2]Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon, "What is Twitter, a Social Network or a News Media," Proceedings of the 19th International Conference on World Wide Web (WWW), Raleigh, NC, USA, 2010, pp.591-600.
[3]Plurk.com Info from Alexa, http://www.alexa.com/siteinfo/plurk.com (Viewed on 2012/5/8)
[4]Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman and Jon Sperling, "TwitterStand: news in tweets," Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS), Seattle, WA, USA, 2009, pp.42-51.
[5]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavaldà, "Detecting Sentiment Change in Twitter Streaming Data," JMLR Workshop and Conference Proceedings, Volume 17, 2011, pp.5-11.
[6]Bongwon Suh, Lichan Hong, Peter Pirolli, and Ed H. Chi, "Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network," Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom), Minneapolis, MN, USA, 2010, pp.177-184.
[7]Cheng-Te Li, Shou-De Lin, "Modeling and Visualizing Information Propagation in a Micro-blogging Platform," Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2011, pp.328-335.
[8]Pei-Shan Chang, I-Hsien Ting, Shyue-Liang Wang, "Towards Social Recommendation System Based on the Data from Microblogs," Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2011, pp.672-677.
[9]Jui-Yu Weng, Cheng-Lun Yang, Bo-Nian Chen, Yen-Kai Wang, Shou-De Lin, "IMASS: An Intelligent Microblog Analysis and Summarization System," Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (HLT): Systems Demonstrations, 2011, pp.133-138.
[10]Zong-Hua Yang and Hung-Yu Kao, "The Clustering of Hot Topics on Plurk," Journal of Computers, Vol. 22, No. 2, July 2011, pp.3-10.
[11]Deepayan Chakrabarti and Kunal Punera, "Event Summarization Using Tweets," Proceedings of the Fifth International AAAI Conference on Weblogs and Social (ICWSM), Barcelona, Spain, 2011, pp.66-73.
[12]Carlos Castillo, Marcelo Mendoza, Barbara Poblete, "Information Credibility on Twitter," Proceedings of the 20th International Conference on World Wide Web (WWW), Hyderabad, India, 2011, pp.675-684.
[13]Byungkyu Kang, John O’Donovan, Tobias H‥ollerer, "Modeling Topic Specific Credibility in Twitter," Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces (IUI), 2012, pp.179-188.
[14]Takeshi Sakaki, Makoto Okazaki and Yutaka Matsuo, "Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors," Proceedings of the 19th International Conference on World Wide Web (WWW), Raleigh, NC, USA, 2010, pp.851-860.
[15]Aron Culotta, "Towards detecting influenza epidemics by analyzing Twitter messages," Proceedings of the First Workshop on Social Media Analytics (SOMA), 2010, pp.115-122.
[16]Jianshu Weng, Bu-Sung Lee, "Event Detection in Twitter", Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM), Barcelona, Spain, 2011, pp.401-408.
[17]Ana-Maria Popescu, Marco Pennacchiotti, Deepa Paranjpe, "Extracting Events and Event Descriptions from Twitter," Proceedings of the 20th International Conference on World Wide Web (WWW), Hyderabad, India, 2011, pp.105-106. (Poster paper)
[18]Rui Li, Kin Lei, Ravi Khadiwala, Kevin Chang, "TEDAS: a Twitter Based Event Detection and Analysis System," Proceedings of the 28th IEEE International Conference on Data Engineering (ICDE), Washington, DC, USA, 2012. (Demos)
[19]Ana-Maria Popescu, Marco Pennacchiotti, "Detecting Controversial Events from Twitter," Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM), Toronto, Canada, 2010, pp.1873-1876. (Poster paper)
[20]Arkaitz Zubiaga, Damiano Spina, Víctor Fresno, Raquel Martínez, "Classifying Trending Topics: A Typology of Conversation Triggers on Twitter," Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM), Glasgow, UK, 2011, pp.2461-2464. (Poster paper)
[21]Liangjie Hong, Ovidiu Dan, Brian D. Davison, "Predicting Popular Messages in Twitter," Proceedings of the 20th International conference on World Wide Web (WWW), Hyderabad, India, 2011, pp.57-58. (Poster paper)
[22]Johan Bollen, Huina Mao, Xiaojun Zeng, "Twitter mood predicts the stock market," Journal of Computational Science, Volume 2 Issue 1, March 2011, pp.1–8.
[23]Xue Zhang, Hauke Fuehres, Peter A. Gloor, "Predicting Stock Market Indicators Through Twitter “I hope it is not as bad as I fear”," Procedia - Social and Behavioral Sciences, Volume 26, 2011, pp.55–62.
[24]Andranik Tumasjan, Timm O. Sprenger, Philipp G. Sandner, Isabell M. Welpe, "Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment," Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM), Washington, DC, USA, 2010, pp.178-185.
[25]Gayo-Avello, D., Metaxas, P. T., and E. Mustafaraj, "Limits of Electoral Predictions using Social Media Data," Proceedings of the Fifth International Conference on Weblogs and Social Media (ICWSM), Barcelona, Spain, 2011, pp.178-185.
[26]A Fonseca, "Modeling political opinion dynamics through social media and Multi-Agent Simulation," First Doctoral Workshop for Complexity Sciences, 2011.
[27]Marko Skoric, Nathaniel Poor, Palakorn Achananuparp, Ee-Peng Lim, Jing Jiang, "Tweets and Votes: A Study of the 2011 Singapore General Election," Proceedings of the 45th Hawaii International Conference on System Sciences (HICSS), Grand Wailea, Maui, HI, USA, 2012, pp.2583-2591.
[28]Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves, Alessandro Flammini, Filippo Menczer, "Political Polarization on Twitter," Proceedings of the Fifth International AAAI Conference on Weblogs and Social (ICWSM), Barcelona, Spain, 2011, pp.89-96.
[29]童振源、周子全、林繼文、林馨怡,「2009年台灣縣市長選舉預測分析」,選舉研究,第十八卷,第一期,2011,第63-94頁。
[30]Ying-Tse Sun, Chien-Liang Chen, Chun-Chieh Liu, Chao-Lin Liu and Von-Wun Soo, "Sentiment Classification of Short Chinese Sentences," Proceedings of the 22nd Conference on Computational Linguistics and Speech Processing (ROCLING), Puli, Nantou, Taiwan, 2010, pp.184-198. (Chinese)
[31]Yi-jie Tang and Hsin-Hsi Chen, "Emotion Modeling from Writer/Reader Perspectives Using a Microblog Dataset," Proceedings of the Workshop on Sentiment Analysis where AI meets Psychology (SAAIP), Chiang Mai, Thailand, 2011, pp.11–19.
[32]Mei-Yu Chen, Hsin-Ni Lin, Chang-An Shih, Yen-Ching Hsu, Pei-Yu Hsu and Shu-Kai Hsieh, "Classifying mood in plurks," Proceedings of the 22nd Conference on Computational Linguistics and Speech Processing (ROCLING), Puli, Nantou, Taiwan, 2010, pp.172-183.
[33]Pak, A., and Paroubek, P. "Twitter as a Corpus for Sentiment Analysis and Opinion Mining," Proceedings of the International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 2010, pp.1320–1326.
[34]Dmitry Davidov, Oren Tsur, Ari Rappoport, "Enhanced sentiment learning using Twitter hashtags and smileys," Proceedings of the 23rd International Conference on Computational Linguistics (COLING ''10), 2010, pp.241-249.
[35]Fotis Aisopos, George Papadakis, Theodora Varvarigou, "Sentiment Analysis of Social Media Content using N-Gram Graphs," Proceedings of the 3rd ACM SIGMM International Workshop on Social Media (WSM), 2011, pp.9-14.
[36]Brendan O''Connor, Ramnath Balasubramanyan, Bryan R. Routledge, Noah Smith, "From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series," Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM), Washington, DC, USA, 2010, pp.122-129.
[37]Jenq-Haur Wang and Chi-Ching Lee, "Unsupervised Opinion Phrase Extraction and Rating in Chinese Blog Posts," Proceedings of the 3rd IEEE International Conference on Social Computing (SocialCom), Boston, USA, 2011, pp.820-823. (Poster paper; IEEE Computer Press)
[38]Tom M. Mitchell, Machine Learning, WCB–McGraw–Hill, 1997.
[39]Jon M. Kleinberg, "Authoritative Sources in a Hyperlinked Environment," Journal of the ACM, Volume 46 Issue 5, Sept. 1999, pp.604-632.
[40]C. D. Manning, P. Raghavan, and H. Scheutze, Introduction to Information Retrieval, Cambridge University Press, 2008.
[41]Zhendong Dong and Qiang Dong, HowNet and the Computation of Meaning, World Scientific Publishing Co.Pte.Ltd, 2006. Dictionary available at http://www.keenage.com/
[42]Lun-Wei Ku and Hsin-Hsi Chen, "Mining Opinions from the Web: Beyond Relevance Retrieval," Journal of American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information Retrieval, Volume 58 Issue 12, 2007, pp.1838-1850. Dictionary available at http://nlg18.csie.ntu.edu.tw:8080/opinion/index.html
[43]Plurk API 2.0, http://www.plurk.com/API/ (Viewed on 2012/01/20)
[44]Yahoo Content Analysis System API, http://tw.developer.yahoo.com/cas/ (Viewed on 2012/01/20)
[45]Ying Liu, Han Tong Loh, Aixin Sun, "Imbalanced text classification: A term weighting approach," Expert Systems with Applications: An International Journal, Volume 36 Issue 1, 2009, pp.690–701.
[46]Eibe Frank, Remco R. Bouckaert, "Naive Bayes for Text Classification with Unbalanced Classes," Proceedings of the 10th European Conference on Principle and Practice of Knowledge Discovery in Databases (PKDD), Berlin, Germany, 2006, pp.503-510.
[47]2012 Taiwan presidential election opinion polls, http://zh.wikipedia.org/wiki/2012年中華民國總統選舉民意調查 (Viewed on 2012/01/20)
[48]未來事件交易所, http://xfuture.org/ (Viewed on 2012/01/20)
[49]Plurk選戰肥皂箱, http://www.plurk.com/Taiwan2012/ (Viewed on 2012/01/20)

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top