跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏仟豪
研究生(外文):Chien-Hao Wei
論文名稱:在嵌入式異質雙核心平台上整合開發夜間車燈與車道追蹤偵測與事件記錄功能之駕駛輔助系統
論文名稱(外文):Integrating and Developing the Night Lights and Lane Tracking Detection and Recording Event Functions into the Driver Assistance Systems on the Heterogeneous Dual-Core Embedded Platform
指導教授:陳彥霖陳彥霖引用關係
口試委員:蔣欣翰高立人楊士萱
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:電腦視覺技術異質雙核心嵌入式系統駕駛輔助系統事件偵測車輛辨識車道線辨識
外文關鍵詞:computer vision technologyheterogeneous dual-coreembedded systemdriver assistance systemsevent detectionvehicle detectionlane detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
由於全世界每年平均有超過一千萬人傷亡是肇因於車禍意外,而其中有半數的交通意外又是發生在夜晚,因此本論文的目的是以電腦視覺技術為基礎發展一套嵌入式夜間駕駛安全輔助系統,並藉由架設於汽車擋風玻璃後方之視訊擷取裝置來即時截取前方的影像,再經由一系列的電腦視覺技術加以分析處理來提供夜間行車輔助時所需的車輛和車道線辨識與追蹤、事件偵測和即時行車記錄等個模組所需之資訊。
在車輛偵測上使用影像切割與型態分析技術來標定出車輛的車頭燈與車尾燈,而在車道線偵測上則利用車道線特徵模組來取出此車道線特徵點在畫面中的所在位置,並將所得到的所有位置利用雲形曲線來建立車道線,再利用上述的位置資訊來進行事件判斷並使用H.264壓縮技術來即時記錄行車影像,最後整合並實現於一套異質雙核心(ARM+DSP)之嵌入式系統平台上。在實作上會先整合車輛偵測模組、車道線偵測模組、事件判斷模組和行車記錄模組,再依照DSP的特性對這些模組做一定程度的優化,使其系統能再異質雙核心之嵌入式平台上達到最佳分工效果,以實現一套應用電腦視覺技術的夜間嵌入式駕駛輔助系統。


The car accidents have been one of the most serious problems. There are over ten million casualties in average each year due to the car accidents, especially in nighttime. Therefore, this thesis proposes a nighttime embedded driving assistance system based on computer vision technology. By analyzing the captured images, the proposed system is able to faciliate vehicle detection, lane detection, lane tracking, event detection and real-time event recording mechanisms.
To detect vehicles based on features of vehicle headlights and taillights, the techniques of image segmentation and pattern analysis is proposed in this study. For obtaining lane features based on lane patterns and spline curves, the lane features and moving vehicle locations are applied for determining the possible traffic events and then activating the real-time video recording process based on H.264 compression technology. The utilized computer vision technology in this thesis is integrated and implemented on the heterogeneous dual-core embedded platform. For optimizing the algorithms, the vehicle detection, lane detection, event identification and video recording modules are integrated on an embedded platform by DSP platform-oriented optimization libraries. Finally, all the modules are integrated in an embedded system to achieve an intelligent embedded night driver assistance system.


ABSTRACT.................................................iii
誌 謝.....................................................v
目 錄....................................................vi
表目錄...................................................vii
圖目錄..................................................viii
第一章 緒論................................................1
1.1 研究背景與動機.........................................1
1.2 文獻探討...............................................2
1.3 論文架構...............................................4
1.4 本論文貢獻.............................................5
第二章 車燈擷取與事件觸發..................................6
2.1 明亮物件切割...........................................6
2.2 連通物件標定..........................................11
2.3 車燈物件的篩選........................................15
2.4 估算與前車距離........................................20
2.5 感興趣區域選擇與車燈追蹤..............................23
第三章 車道偵測與事件觸發.................................26
3.1 車道線特徵擷取........................................26
3.2 感興趣區域 (Regions of Interest, ROI)的選擇...........28
3.3 車道線擷取狀態機 .....................................31
3.4 重建車道線及判斷是否偏離車道..........................33
3.5 校正機制..............................................37
第四章 系統介紹與移植.....................................38
4.1 系統架構和流程........................................38
4.2 嵌入式平台介紹........................................40
4.3 演算法移植............................................43
4.4 系統的優化............................................47
第五章 實驗結果與分析.....................................50
5.1 個人電腦平台實驗結果..................................50
5.2 嵌入式平台實驗架構和實驗結果..........................58
5.3 功能性比較............................................61
第六章 結論與未來展望.....................................66
6.1 結論..................................................66
6.2 未來展望..............................................66
參考文獻..................................................68


[1] D. Pomerleau, “RALPH: Rapidly adapting lateral position handling,” in Proc. IEEE Intelligent Vehicle Symp., pp. 506–511, 1995.
[2] D. Langer and T. Jochem, “Fusing Radar and Vision for Detecting, Classifying and Avoiding Roadway Obstacles,” in Proc. IEEE Intelligent Vehicle Symp., pp. 333 - 338, 1996.
[3] M. Bertozzi, A. Broggi, and A. Fascioli, “Vision-based intelligent vehicles: State of the art and perspectives,” Robot. Automat. Syst., vol. 32, pp. 1–16, 2000.
[4] A. Broggi and S. Bert, “Vision-based road detection in automotive systems: A real-time expectation-driven approach,” J. Artif. Intell. Res., vol. 3, pp. 325–348, 1995.
[5] A. Broggi, M. Bertozzi, A. Fascioli, and G. Conte, “Automatic Vehicle Guidance: The Experience of the ARGO Autonomous Vehicle.” Singapore: World Scientific, 1999.
[6] C. J. Taylor, J. Malik, and J. Weber , “A Real-time approach to stereopsis and lane-finding”, in Proc. 1996 IEEE Intelligent Vehicles Symposium, pp. 207–213, 1996.
[7] P. McLauchlan, and J. Malik , “Vision for longitudinal vehicle control”, in Proc. 1997 IEEE Intelligent Transportation Systems, pp. 918-923, 1997.
[8] A. Broggi, M. Bertozzi, A. Fascioli, C.G.L. Bianco, A. Piazzi, “Visual perception of obstacles and vehicles for platooning”, IEEE Trans. Intell. Transport. Syst., vol. 1, pp. 164-176, 2000.
[9] P. McLauchlan, and J. Malik , “Vision for longitudinal vehicle control”, in Proc. 1997 IEEE Intelligent Transportation Systems, pp. 918-923, 1997.
[10] A. Broggi, M. Bertozzi, A. Fascioli, C.G.L. Bianco, A. Piazzi, “Visual perception of obstacles and vehicles for platooning”, IEEE Trans. Intell. Transport. Syst., vol. 1, pp. 164-176, 2000.
[11] J. Malik, C. J. Taylor, P. McLauchlan, and J. Kosecka, “Development of Binocular Stereopsis for Vehicle Lateral Control, Longitudinal Control and Obstacle Detection”, PATH MOU-257 Final Report, Univ. of Cal at Berkeley, Sep. 1997.
[12] J. S. Stam, J. H. Bechtel, and J. K. Roberts, “Control system to automatically dim vehicle head lamps”, U.S. Patent No. 5,837,994, 1998.
[13] J. S. Stam, “Headlamp control to prevent glare”, U.S. Patent No. 6,861,809, 2005.
[14] J. S. Stam, M. W. Pierce, H. C. Ockerse, “Image processing system to control vehicle headlamps or other vehicle equipment”, U.S. Patent No. 6,868,322, 2005.
[15] T. Liu, N. Zheng, H. Cheng, and Z. Xing, “A novel approach of road recognition based on deformable template and genetic algorithm,” in Proc. IEEE Intelligent Transportation systems, pp. 1251-1256, Oct. 2003.
[16] B. Fardi and G. Wanielik, “Hough transformation based approach for road border detection in infrared images,” in Proc. IEEE Intelligent Vehicles Symp., Parma, Italy, pp. 549-554 ,June 2004.
[17] B. F. Wu, and C. T. Lin, “Robust image measurement and analysis based on perspective transformations,” in Proc. IEEE Syst., Man, Cybern. Symp., pp.2390-2395, Oct. 2006.
[18] T.N. Schoepflin and D.J. Dailey, “Dynamic camera calibration of roadside traffic management cameras for vehicle speed estimation,” IEEE Transactions on Intell. Trans. Syst., vol. 4, no.2, pp. 90-98, June 2003.
[19] L. L. Wang and W. H. Tsai, “Camera calibration by vanishing lines for 3-D computer vision,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pp. 370-376, April 1991.
[20] 范崇瑞,以電腦視覺為基礎的夜間車輛偵測與追蹤技術及其在交通監控與駕駛輔助之應用,碩士論文,國立交通大學電機與控制工程學系,新竹,2008
[21] N. Hautiere, J.-P. Tarel, J. Lavenant, and D. Aubert. “Automatic fog detection and estimation of visibility distance through use of an onboard camera.” Machine Vision and Applications, 17(1):8–20, april 2006.
[22] 道路交通標誌標線號誌設置規則 –
“http://law.moj.gov.tw/LawClass/LawContent.aspx?PCODE=K0040014”
[23] M.D. Levine, and A.M. Nazif, “Dynamic measurement of computer generated image segmentation”, IEEE Trans. Pattern Analysis & Machine Intelligence, vol. 7, pp.155-164, 1985.
[24] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on sequential local operations”, Computer Vision & Image Understanding, vol. 89, 2003, pp.1-23.
[25] 林敬俊,整合夜間車燈與車道偵測與事件記錄功能之嵌入式駕駛輔助系統,碩士論文,國立臺北科技大學資訊工程學系,臺北,2011
[26] 曾惓賢、劉嘉福、李光偉、陳銘旭,「國內用路人跟車行為潛在風險性分析與前方防撞系統發展之關聯性」,九十三年道路交通安全與執法國際研討會論文集,臺北,2004
[27] Bing-Fei Wu, Chuan-Tsai Lin, and Yen-Lin Chen “Dynamic calibration and occlusion handling algorithms for lane tracking”, IEEE Trans. on Industrial Electronics, vol. 56, no.5, May 2009
[28] P. Y. Hsiao, C. W. Yeh, S. S. Huang, and L. C. Fu, “A portable vision-based real-time lane departure warning system: Day and night,” IEEE Transactions on Vehicular Technology, vol. 58, pp. 2089-2094, 2009.
[29] Texas Instruments, OMAP3530/25 Applications Processor SPRS507F, OCTOBER 2009
[30] TI新聞稿– “http://www.ti.com.tw/news/newsdetail.asp?scid=SC-09098”
[31] Codec Engine GenCodecPkg Wizard FAQ – “http://processors.wiki.ti.com/index.php/Codec_Engine_GenCodecPkg_Wizard_FAQ”
[32] Codec Engine GenServer Wizard FAQ – http://processors.wiki.ti.com/index.php/Codec_Engine_GenServer_Wizard_FAQ
[33] Codec Engine Application Developer User''s Guide Literature Number: SPRUE67D September 2007
[34] 影片A - “ http://www.youtube.com/watch?v=00TrIgASrrw”
[35] 影片B - “http://www.youtube.com/watch?v=DTW9X8y5sW0”
[36] 影片C - “http://www.youtube.com/watch?v=SRZQqWuaBmA”
[37] 影片D - “http://www.youtube.com/watch?v=PU_CVek17MQ”
[38] 影片E - “http://www.youtube.com/watch?v=3i4ACEbiito”
[39] 影片F - “http://www.youtube.com/watch?v=lXHH66KQ3QM”
[40] 影片G - “http://www.youtube.com/watch?v=Ia2s2PvX6LI”
[41] 影片H - “http://www.youtube.com/watch?v=Uzscz62vSHI”
[42] 影片I - “http://www.youtube.com/watch?v=GOduyOpEBjk”
[43] 影片J - “http://www.youtube.com/watch?v=4ZjykWsyJ3M”
[44] 影片K - “http://www.youtube.com/watch?v=dJU0dOgfV8s”
[45] 影片L - “http://www.youtube.com/watch?v=2oVtPWzetns”
[46] Lewis , E. B. Control of body s egment differentiation in Drosophila by the bithorax gene complex, Embr yonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, 1982, pp.269-288.
[47] Chen, T. and Chung, K., “A new randomized algorithm for detecting lines,” Real Time Imaging, vol. 7, pp. 473–481, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊