跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧子威
研究生(外文):Tzu-Wei Lu
論文名稱:碳酸化對燃煤飛灰無機聚合材料特性影響之研究
論文名稱(外文):A Study on the Properties of Coal Fly Ash Geopolymer Affected by Carbonation
指導教授:柯明賢柯明賢引用關係
口試委員:林宗曾張祖恩鄭大偉
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:無機聚合材料燃煤飛灰碳酸化抗壓強度熱重分析
外文關鍵詞:GeopolymerCoal fly ashCarbonationCompressive strengthTG analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用燃煤飛灰與氫氧化鈉溶液合成之無機聚合材料進行碳酸化實驗,以探討無機聚合材料於二氧化碳氣氛下其特性之變化,利用燃煤飛灰與氫氧化鈉溶液以固定之液固比製成粒徑為1.5×3.0 cm之柱狀與0.8cm之粒狀無機聚合材料,並分別進行室溫養護與溫度200℃、水氣組成40%、二氧化碳組成60%之碳酸化養護,之後分別取養護7天、14天與28天之試體進行各項特性分析,以探討碳酸化對於無機聚合材料於養護階段其特性變化之影響。另外,本研究亦將室溫養護28天後之試體進行28天之碳酸化實驗,並進行各項特性分析,以探討碳酸化對於無機聚合材料特性之影響。
由結果可發現柱狀試體在碳酸化養護下於7天時其抗壓強度遠高於室溫養護,而到了第14天時其抗壓強度驟降,低於室溫養護之試體。由試體切片之SEM發現在試體外層形成較為緻密之結構,而由pH值分析可發現7天至14天之碳酸化養護之試體的pH值為11,到了28天時其pH值降至10。又碳酸化養護28天試體之抗壓強度及熱重分析與碳酸化養護14天之試體均無明顯差異,顯示碳酸化養護之試體其無機聚合反應到了14天之後可能受碳酸化之影響而停止。本研究進一步將室溫養護28天後之柱狀無機聚合材料試體再進行溫度200℃、水氣組成40%、二氧化碳組成60%之碳酸化實驗,由結果可發現在經過室溫養護28天後之試體在經過碳酸化其抗壓強度僅略微下降,顯示柱狀之無機聚合材料其抗壓強度不受碳酸化影響,而由熱種分析結果顯示室溫養護後之無機聚合材料可作為二氧化碳之吸收材,值得進一步探討。
而由粒狀無機聚合材料的研究結果可發現在碳酸化養護下於7天時其抗壓強度遠高於室溫養護,而到了第14天時其抗壓強度雖驟降,但仍高於室溫養護之試體,直到第28天其抗壓強度才較室溫養護之試體為低。而由pH值分析可發現碳酸化養護之試體在第7天時之pH值約為11,而到了第14天後其pH值下降至10.8,且到了28天後其pH值約為10.4。之後進一步將室溫養護28天後之粒狀無機聚合材料進行溫度200℃、水氣組成40%、二氧化碳組成60%之碳酸化實驗,由抗壓強度分析結果可發現在28天碳酸化養護後無機聚合材料之抗壓強度由25Mpa上升到30MPa,顯示粒狀無機聚合材料在碳酸化後其抗壓強度有上升的趨勢。
綜合本研究結果可發現,無機聚合材料如要得到早期高抗壓強度,可於二氧化碳氣氛下進行碳酸化養護,不僅於7天內可得到較高之抗壓強度,亦兼具二氧化碳之吸收作用。而經28天室溫養護後之無機聚合材料則會有較佳之二氧化碳吸收能力,且碳酸化對其抗壓強度不會產生顯著的影響。


The aim of this study was to utilize coal fly ash and NaOH solution to prepare 1.5×3.0 cm pillared and 0.8cm granular geopolymer, and the carbonation test would be used to investigate the effects of carbonation on the properties of geopolymer. The both geopolymers were respectively cured in the atmospheric and carbonation(temperature 200℃, 40% H2O, 60% CO2) conditions. Besides, another carbonation test(temperature 200℃, 40% H2O, 60% CO2) was performed after 28 days atmospheric curing. To analyze the compressive strength, pH and TG of geopolymer cured after 7, 14, 28 days was used to evaluate the effects of carbonation on geopolymer.
The results indicated that the compressive strength of pillared geopolymer curing with carbonation was higher than curing with atmosphere after 7 days. The compressive strength of geopolymer curing with carbonation after 14 days decreased with curing time and was lower than curing with atmosphere. The SEM photographs showed that the outer layer microstructures of geopolymer became more compact. Furthermore, the pH analysis showed that the pH of geopolymer was 11 after 7~14 days and the pH decreased to 10 after 28 days. The compressive strength and TG analysis of geopolymer cured after 28 days did not obviously change compared with cured after 14 days. It implied that the geopolymerization of geopolymer could shut down due to the carbonation after 14 days. Besides, the carbonation of geopolymer cured with atmosphere after 28 days was also performed. The results indicated that the compressive strength of pillared geopolymer was not affected by carbonation and the cured geopolymer was a good absorption material of CO2.
The results indicated the compressive strength of granular geopolymer curing with carbonation was higher than curing with atmosphere after 7 days. The compressive strength of geopolymer curing with carbonation after 14 days decreased with curing time but was still higher than curing with atmosphere. The compressive strength of geopolymer curing with carbonation after 28 days was lower than curing with atmosphere. Furthermore, the pH analysis showed that the pH of geopolymer was 11 after 7 days and the pH respectively decreased to 10.8 after 14 days and 10.4 after 28 days. Besides, the carbonation of geopolymer cured with atmosphere after 28 days was also performed and the results indicated that the compressive strength of granular geopolymer would become higher
Based on the results of this study, it implies that the compressive strength of geopolymer in the carbonation curing would reach higher than in the atmosphere curing after 7 days. The geopolymer curing in the atmosphere condition after 28 days would have the better absorption capacity of CO2 and the compressive strength of geopolymer curing in the atmosphere condition after 28 days was not obviously affected by the carbonation.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 燃煤飛灰之產出、特性及資源化 3
2.1.1 燃煤飛灰之來源 3
2.1.2 燃煤飛灰之物化特性 4
2.1.3 燃煤飛灰之資源化技術 6
2.2 無機聚合材料 8
2.2.1 無機聚合材料之原料 8
2.2.2 無機聚合材料之化學結構 12
2.2.3 無機聚合材料之反應機理 18
2.2.4 無機聚合材料之影響因子 20
2.2.5 無機聚合材料之特性 23
2.3 礦物碳酸化反應及其影響因子 26
2.3.1 礦物碳酸化反應 29
2.3.2 碳酸化程度之影響因子 34
2.4影響無機聚合材料之碳酸化因子與特性之改變 36
2.4.1 影響無機聚合材料碳酸化之因子 36
2.4.2 無機聚合材料碳酸化之特性變化 37
2.4.3 無機聚合材料碳酸化之相關研究 37
2.5 綜合評析 38
第三章 實驗方法及內容 40
3.1 實驗流程 40
3.2 實驗材料合成與設備 42
3.3 化學特性分析 45
3.4 顯微結構分析 49
第四章 結果與討論 51
4.1 燃煤飛灰合成之無機聚合材料產生碳酸化反應之可能性。 51
4.1.1 燃煤飛灰之基本特性分析 51
4.1.2 燃煤飛灰合成之無機聚合材料之基本特性分析 54
4.1.3 小結 58
4.2.1 養護時間對無機聚合材料特性之影響 59
4.2.2 粒狀試體之各養護條件對無機聚合材料特性之影響 68
4.2.3 小結 75
4.3 不同形狀之無機聚合材料試體於各碳酸化條件下之特性之改變 76
4.3.1 無機聚合材料於不同碳酸化條件下之特性改變 76
4.3.2 粒狀試體對無機聚合材料碳酸化之特性改變 81
4.3.3 小結 85
第五章 結論與建議 86
5.1 結論 86
5.2 建議 88
參考文獻 89

參考文獻
[1]林平全,飛灰混凝土,科技圖書,84年12月4版。
[2]經濟部能源局/中華民國98年能源統計手冊
[3]王怡敦,礦物組成對燃煤飛灰去除水中銅離子之影響,碩士論文,嘉南藥理科技大學研究所,嘉義,2002。
[4]J.G.S. Van Jaarsveld and J.S.J Van Deventer, “Effect of the alkali metal activator on the properties of fly ash-based geopolymers,” International Engineering Chemical Research, vol. 38, 1999c, pp. 3932-3941
[5]J.Z.Xu , Y.L.Zhou, Q.Chang and H.Q.Qu, “Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers,” Materials Letters, vol. 60, 2006, pp. 820-822.
[6]J.W.Phair, J.S.J. Van Deventer, J.D. Smith, “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers”,” Applied Geochemistry, vol. 19, 2004, pp. 423-434.
[7]J.G.S. Van Jaarsveld, J.S.J. Van Derventer and L. Lorenzen, “The potential use of geololymer materials to immobolise toxic metals: Part I Theory and applications,” Minerals Engineering, vol. 10, 1997, pp. 659-669.
[8]K.L.Li, G.H.Huang, , J.Chen, D.Wang . and X.S. Tang, “Early Mechanical Property and Durability of Geopolymer”, Geopolymer: green chemistry and sustainable development solutions” , 2005 , pp.117-120.
[9]T.W. Cheng and J.P. Chiu, “Fire-resistant geopolymer produced by granulated blast furnace slag,” Minerals Engineering, vol. 16, 2003, pp. 205-210.
[10]T. Bakharev﹐”Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing”﹐Cement and Concrete Research, Vol.36﹐2006﹐pp.1134-1147
[11]T.Bakhareva, J.G.Sanjayan and Y.B.Cheng, “Resistance of alkali-activated slag concrete to acid attack,” Cement and Concrete Research, vol. 33, 2003, pp. 1607-1611.
[12]K.L.Li, G.H.Huang, J.Chen, D.Wang. and X.S.Tang, “Early Mechanical Property and Durability of Geopolymer”, Geopolymer: green chemistry and sustainable development solutions , 2005, pp.117-120.
[13]J.W. Phair and J.S.J. Van Deventer, “Effect of silicate activator pH on the leaching and material characteristic of waste-based inorganic polymers,” Mineral Engineering, vol. 14, no. 3, 2001, pp. 289-304.
[14]C.Kaps, and A.Buchwald, “Property controlling influences on the generation of geopolymeric based on clay”, Geopolymer 2002 International Conference, Melbourne, Australia, CD-ROM.
[15]H.Xu, and Van Deventer, J.S.J., “The geopolymerisation of alumino-silicatminerals”, International Journal Minerals Process, Vol. 59, 2000, pp.247-266.
[16]S. Zhang, K. Gong and J. Lu, “Novel modification method for inorganic geopolymer by using water soluble organic polymers,” Materials Letters, vol. 58, 2004, pp. 1292-1296.
[17]L. Verdolotti, S. Iannace, M. Lavorgna and R. Lamanna, “Geopolymerization reaction to consolidate incoherent pozzolanic soil,” Journal of Materials Science, vol. 43, 2008, pp. 865-873.
[18]J. Davidovits, “Geopolymers : Inorganic polymeric new materials, Journal of Thermal Analysis,”vol.37, 1991, pp.1633-1656.
[19]Geopolymer Institute Home Page, 1996-2008, http://www.geopolymer.org/science.html
[20]J.Davidovits, “Geopolymer chemistry and applications,” France: Geopolymer Institute, 2008, pp. 61-76.
[21]S.Fratisek“Material and structural characterization of alkali activated low-calcium brown coal fly ash,”Journal of Hazardous Materials, vol.168, 2009, pp.711-720.
[22]M.Criado, A.Palomo, “Alkali activation of fly ash. Part 3:Effect of curing conditions on reaction and its graphical description,”Fuel, vol. 89, 2010, pp.3185-3192.
[23]A.Buchwald, M.Hohmann, K.Posern, “The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders,” Applied Clay Science, vol. 20, 2009, pp. 92–97.
[24]S.Andini, R.Cioffi, “Coal fly ash as raw material for the manufacture of geopolymer-based products”, Waste management, vol.28, 2008, pp. 416-423.
[25]A.Ferna´ndez-Jime´nez, A.Palomo, “Composition and microstructure of alkali activated fly ash binder:Effect of the activator”, Cement and Concrete Research, vol. 35, 2005, pp. 1984-1992.
[26]Van Deventer, J.S.J., Provis, J.L., Duxson, P.and Lukey, G.C., “Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products”, Journal of Hazardous Materials, Vol.30, 2006, pp.213-217.
[27]A.Ferna´ndez-Jime´nez, A.Palomo, “Characterisation of fly ashes. Potential reactivity as alkaline cements”, Fuel, vol. 82, 2003, pp. 2259-2265.
[28]W.Nigel, C.Tan, A.Van Riessen, “Determining the Reactivity of a Fly Ash for Production of Geopolymer”, The American Ceramic Society, vol. 92 [4], 2009, pp. 881–887.
[29]E.I.Diaz, E.N. Allouche, S.Eklund, “Factors affecting the suitability of fly ash as source material for geopolymers”, Fuel, vol. 89, 2010, pp. 992–996.
[30]J.C.Swanepoel and C.A.Strydom, “Utilisation of fly ash in a geopolymeric materic”, Applied Geochemistry, vol. 17, no. 8, 2002, pp. 1143-1148.
[31]S.Zhang, K.Gong and J.Lu, “Novel modification method for inorganic geopolymer by using water soluble organic polymers”, Materials Letters, vol. 58, 2004, pp. 1292-1296.
[32]丁秋霞、馬鴻文、王剛、馮武威,利用石英砂製備礦物聚合材料的實驗研究,建築石膏與膠凝材料,北京,2003年,第6-8頁。
[33]L.Weng, K.Sagoe-Crentsil, “Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I. Low Si/Al ratio systems”, Journal of Materials Science, vol.42, 2007, pp. 2997-3006.
[34]K.Sagoe-Crentsil, L.Weng, “Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: PartⅡ. High Si/Al ratio systems”, Journal of Materials Science, vol.42, 2007, pp. 3007-3014.
[35]Metz B, et al., "IPCC special report on carbon dioxide capture and storage"
[36]K.S.Lackner, C.H.Wendt, D.P.Butt, E.L.Joyce, and D.H.Sharp, “Carbon dioxide disposal in carbonate minerals”, Energy, 1995, 20 (11), pp.1153-1170.
[37]K.S.Lackner, “A guide to CO2 sequestration”, Science, 300 (5626), 2003, pp. 1677–1678.
[38]D.R.Morris, J.Szargut, “Standard chermical exergy of some elements and compounds on the planet earth”, Energy, 11 (8), 1986, pp. 733-755.
[39]R.David, E.Lide, “CRC handbook of chemistry and physics”, Taylor and Francis, BocaRaton, FL, 2007.
[40]K.S.Lackner, D.P.Butt, C.H.Wendt, “Progress on binding CO2 in mineral substrates”, Energy Conversion and Management, vol. 38, 1997, pp. 259-264.
[41]W.K.O’Connor, D.C.Dahlin, D.N.Nilsen, R.P.Walters and P.C.Turner, “Carbon dioxide sequestration by direct mineral carbonation with carbonic acid”, Proceedings of the 25th International Technical Conference on Coal Utilization and Fuel Systems. Clearwater, Florida, 2000.
[42]Eva Rendek, Gaelle Ducom, Patrick Germain, “Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash”, Hazardous Materials, vol. B128, 2006, pp.73-79.
[43]Wouter J.J.Huijgen, Geert-Jan Witkamp, and Rob N.J.Comans, “Mineral CO2 sequestration by BOF slag Carbonation”, Environmental Science & Technology, vol. 39, 2005, pp. 9676-9682.
[44]Jia Sun, Marta Ferna´ndez Bertos and Stefaan J. R. Simons,“Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2”, Energy & Environmental Science, vol. 1, 2008, pp. 370 – 377.
[45]M. Fernández Bertos , X. Li , S. J. R. Simons, C. D. Hills and P. J. Carey, “Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2”, The Royal Society of Chemistry, 2004, pp. 428-436.
[46]J.S.J. van Deventer, J.L. Provis, P. Duxson, G.C. Lukey, “Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products”, Journal of Hazardous Materials, Vol.30 2006, pp.213-217.
[47]F. PUERTAS, M. PALACIOS, T. VA´ ZQUEZ,” Carbonation process of alkali-activated slag mortars” , J MATER SCI 41 (2006) 3071–3082
[48]Ke Wang, Xin Guo, Pengfei Zhao, Chuguang Zheng” Cyclic CO2 capture of CaO-based sorbent in the presence of metakaolin and aluminum (hydr)oxides” ,Applied Clay Science Volume 50, Issue 1, September 2010, Pages 41–46.
[49]Susan A. Bernal, Ruby Mejía de Gutiérrez, Alba L. Pedraza, John L. Provis, Erich D. Rodriguez, Silvio Delvasto” Effect of binder content on the performance of alkali-activated slag concretes”, Cement and Concrete Research Volume 41, Issue 1, January 2011, Pages 1–8
[50]Isabella Lancellotti,Elie Kamseu,Marco Michelazzi,Luisa Barbieri,Anna Corradi,Cristina Leonelli” Chemical stability of geopolymers containing municipal solid waste incinerator fly ash”, Waste Management Volume 30, Issue 4, April 2010, Pages 673–679
[51]Vasilije Manovic and Edward J. Anthony ”Screening of Binders for Pelletization of CaO-Based Sorbents for CO2 Capture”, Energy Fuels, 2009, 23 (10), pp 4797–4804
[52]E.E. Chang, Shu-Yuan Pan, Yi-Hung Chen, Hsiao-Wen Chu, Chu-Fang Wang, Pen-Chi Chiang,” CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor”, Journal of Hazardous Material journal home page: www.elsevier.com/locate/jhazmat
[53]戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立臺北科技大學材料及資源工程系,台北,2005。
[54]D.L.Y.Kong, J.G.Sanjayan, K.Sagoe-Crentsi “Factors affecting the performance of metakaolin geopolymerss exposed to elevated tempreatures”, Journal of Materials Science, Vol. 43, 2008, pp.824-831
[55]M.Komljenović , Z.Baščarević , V.Bradić “Mechanical and microstructural properties of alkali-activated fly ash geopolymers”, Journal of Hazardous Materials Volume 181, Issues 1–3, 15 September 2010, Pages 35–42
[56]陳志賢,含矽質廢棄物之無機聚合材料,博士論文,國立成功大學土木工程研究所博士班,台南,2009
[57]李明霖,無機聚合材料吸附重金屬之研究,碩士論文,國立臺北科技大學材料及資源工程系,台北,2007。
[58]J.Davidovits, “Geopolymer chemistry and properties”, Geopolymer’88,France,1988, pp.25-48
[59]Vasilije Manovic , Edward J. Anthony “CaO-Based Pellets Supported by Calcium Aluminate Cements for High-Temperature CO2 Capture” , Environ. Sci. Technol., 2009, 43 (18), pp 7117–7122
[60]Vasilije Manovic , Edward J. Anthony “Screening of Binders for Pelletization of CaO-Based Sorbents for CO2 Capture”, Energy Fuels, 2009, 23 (10), pp 4797–4804
[61]Wenqiang Liu, Nathanael WL Low, Bo Feng, Guoxiong Wang and João C. Diniz da Costa “Calcium Precursors for the Production of CaO Sorbents for Multicycle CO2 Capture”, Environ. Sci. Technol., 2010, 44 (2), pp 841–847
[62]Thongthai Witoon , “ Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent”, Ceramics International Volume 37, Issue 8, December 2011, Pages 3291–3298


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,P175-P200。
2. 張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,P175-P200。
3. 張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,P175-P200。
4. 張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,P175-P200。
5. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,295-347頁。
6. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,295-347頁。
7. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,295-347頁。
8. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,295-347頁。
9. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,35-62頁。
10. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,35-62頁。
11. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,35-62頁。
12. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,27期,35-62頁。
13. 林清山、張景媛(1993)。國中生後設認知、動機信念與數學學習之關係暨代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,26期,115-137頁。
14. 林清山、張景媛(1993)。國中生後設認知、動機信念與數學學習之關係暨代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,26期,115-137頁。
15. 林清山、張景媛(1993)。國中生後設認知、動機信念與數學學習之關係暨代數應用題教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,26期,115-137頁。