跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王郁婷
研究生(外文):Yu-Ting Wang
論文名稱:BiSbO4和Mg(Zr0.05Ti0.95)O3之低溫燒結
論文名稱(外文):Low Temperature Sintering of BiSbO4 and Mg(Zr0.05Ti0.95)O3
指導教授:陳志恆陳志恆引用關係王錫福
指導教授(外文):Jyh-Herng ChenSea-Fue Wang
口試委員:段維新吳玉娟徐永富
口試委員(外文):Wei-Hsing TuanYu-Chuan WuYung-Fu Hsu
口試日期:2011-01-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:BiSbO4MZT低溫燒結微波介電陶瓷
外文關鍵詞:BiSbO4MZTlow temperature sinteringmicrowave ceramic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於資訊流通量的日益提升,通訊產品之需求越趨嚴格,介電元件的微型化已成為目前微波通訊系統的重要目標。陶瓷介電材料之製程技術成熟且成本低廉,因此已被廣泛用於被動元件上,一般微波介電材料訴求高介電常數(εr)、高品質因子(Qf)、趨近於零的共振頻率溫度係數(τf),因應環保需求,一般希望製程盡可能的達到低溫、短時之燒結條件。
降低燒結溫度可藉由選擇較低燒結溫度之起始原料、添加低熔點氧化物…等方式來達成。本研究分為兩個主軸,由於前人文獻中發現BiSbO4具有良好的微波介電性質,且其燒結溫度低,因此第一部分的研究擬使用BiSbO4為起始原料;有鑑於介電元件的共振頻率逐漸往高頻移動,介電常數的要求已不像以往的高,相對的高品質因子就越顯重要,Mg(Zr0.05Ti0.95)O3具有良好的微波介電特性,唯其燒結溫度高,加重了製程成本,因此第二部分的研究則是添加3ZnO-B2O3於Mg(Zr0.05Ti0.95)O3中,藉此降低燒結溫度。
第一部分的研究中利用固態法合成BiSbO4及CaTiO3,探討(1-x)BiSbO4 + xCaTiO3(x = 0-7 wt%)複合材料之微波介電性質。根據實驗結果,當x = 0 wt%(即BiSbO4),燒結條件為1050℃/ 2h之陶瓷體具有良好之介電特性(εr~21.0、Qf~53,336 GHz),唯其τf~-47.2 ppm/℃不適用於介電共振器。當x=1 wt%,燒結條件為1100℃/ 2h,添加具有較高εr之CaTiO3(εr = 170),使其εr提升至~21.9;同時品質因子亦提升到~61,150 GHz,由SEM分析結果推估品質因子上升是因為晶粒成長、使其晶界數目減少,因此損耗下降所致;在添加具有正值τf之CaTiO3(τf = 800 ppm/℃)後,有效將τf改善至~-40.0 ppm/℃。當x>1 wt%,εr沒有明顯的改變,品質因子因為大量其他相生成而下降,τf隨著CaTiO3添加量的增加而逐漸趨近於零。
第二個部分的研究中擬添加3 wt% 3ZnO-B2O3於Mg(Zr0.05Ti0.95)O3系統中,觀察相組成、微結構和微波介電性質的變化。實驗結果顯示,添加3 wt% 3ZnO-B2O3可有效降低Mg(Zr0.05Ti0.95)O3塊材之燒結溫度,並提升其密度,燒結緻密溫度由1420℃降低到1290℃,其介電常數亦由~ 17.1提升到 ~ 17.8,品質因子由~ 210,153 GHz提升到~ 584.343 GHz。


The recent rapid progress in communications in microwave frequencies, such as portable phones and car telephones, has increased demand for the miniaturization of components such as band pass filters and local oscillators. In the fabrication of multilayer microwave devices, low-firing microwave dielectric materials with high dielectric constant εr , low dielectric loss and near-zero temperature coefficient of resonant frequency τf are needed. In this thesis, pure BiSbO4 ceramics with monoclinic structure were synthesized via solid-state reaction method, furthermore, discus the microwave dielectric properties of (1-x)BiSbO4 + xCaTiO3 (x = 0-7 wt%). According to the result, x=0 wt%, as BiSbO4, has good microwave dielectric properties with dielectric constant εr~21.0, Qf~53,336 GHz, but the value of τf~-47.2 ppm/℃ which limits the application. When x=1 wt%, εr improve to 21.9, Qf improve to 61,150 GHz, τf improve to -40.0 ppm/℃.
Due to the shift of the frequency of interest from 900 MHz to 2.4, 5.2, or even 5.8 GHz, their dielectric constants need not be as high as required in the past. A high-quality factor becomes important because Qf is almost constant in the microwave region. Although Mg(Zr0.05Ti0.95)O3 has good dielectric properties, the sintering condition increase the production cost. Addition of low melting point oxides is an often used method to lower the sintering temperature of microwave dielectric ceramics. Effects of 3 wt% 3ZnO-B2O3 mixture addition on the sintering behavior, phase composition and microwave dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics have been investigated. Dense Mg(Zr0.05Ti0.95)O3 ceramics sintered at 1290℃ with 3 wt% 3ZnO-B2O3 mixtures addition , which exhibited good microwave dielectric properties with dielectric constant εr ~ 17.8, Qf values ~ 584.343 GHz.

目錄
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 微波介電材料發展現況 3
2.2 鈦鐵礦結構之介電特性 6
2.3 A3+B5+O4結構之介電特性 17
2.4 A3+B5+O4介電材料 19
第三章 實驗流程與量測 25
3.1 實驗原料 25
3.2 實驗流程 25
3.3 材料特性分析方法 28
3.3.1 燒結密度量測 28
3.3.2 X-Ray相鑑定(XRD) 28
3.3.3 微結構分析-掃描式電子顯微鏡(SEM) 29
3.4 材料微波介電特性量測 31
第四章 結果與討論 33
4.1 (1-x)BiSbO4 + xCaTiO3系統 33
4.1.1 溫度對(1-x)BiSbO4 + xCaTiO3之影響 33
4.1.2 最緻密化溫度對(1-x)BiSbO4 + xCaTiO3之影響 49
4.2 Mg(Zr0.05Ti0.95)O3系統 54
第五章 結論 65
參考文獻 66



參考文獻
[1] D. Zhou, H. Wang, X. Yao, L. X. Pang, “Dielectric behavior and cofiring with silver of monoclinic BiSbO4 ceramic”, Journal of the American Ceramic Society, vol. 91, no. 4, 2008, pp. 1380-1383.
[2] C. F. Tseng, “Microwave dielectric properties of a new ultra low loss pervoskite ceramic”, Journal of the American Ceramic Society, vol. 91, no. 12, 2008, pp. 4125-4128.
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave dielectric characteristics of Ilmenite-type titanates with high Q values”, Journal of Applied Physics, vol. 33, 1994, pp. 5466-5470.
[4] H. Yu, J. Cheng, W. Zhang, J. Liu, G. Xu, “Microwave dielectric properties of Mg(Zr0.05Ti0.95)O3-SrTiO3 ceramics”, Journal of Materials Science: Materials Electron, 2011, pp. 572-575
[5] R. S. Roth, J. L. Waring, “Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds”, The American Mineralogist, vol. 48, 1963, pp. 1348-1356.
[6] J. K. Warner, R. C. Ewing, “Crystal chemistry of samarskite”, American Mineralogist, vol. 78, 1993, pp. 419-424.
[7] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, Newnham, R. E., “Effect of glass additions on BaO-TiO2-WO3 microwave ceramics”, Journal of the American Ceramic Society, vol. 77, no. 7, 1994, pp. 1909-1916.
[8] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, Newnham, R. E., “Effects of glass additions on (Zr,Sn)TiO4 for microwave applications”, Journal of the American Ceramic Society, vol. 77, no. 9, 1994, pp. 2485-2488.
[9] S. I. Hirano, T. Hayashi, A. Hattori, “Chemical processing and microwave characteristics of (Zr,Sn)TiO4 microwave dielectrics”, Journal of the American Ceramic Society, vol.74, no. 6, 1991, pp. 1320-1324.
[10] A. C. Skapski, D. Rogers, “The structure of SbNbO4, α-Sb2O4, and SbTaO4”, Chemical Communications, vol. 23, 1965, pp. 611-613.
[11] E. T. Keve, A. S. Skapski, “The structure of triclinic BiNbO4 and BiTaO4”, Chemical Communications, vol. 6, 1967, pp. 281-283.
[12] V. I. Popolitov, A. N. Lobachev, V. F. Peskin, “Antiferroelectrics, ferroelectrics and pyroelectrics of a stibiotantalite structure”, Ferroelectrics, vol. 40, 1982, pp. 9-16.
[13] H. Kagata, T. Inoue, J. Kato, I. Kameyama, “Low-fire bismuth-based dielectric ceramics for microwave use”, Japanese Journal of Applied Physics, vol. 31, 1992, pp. 3152-3155.
[14] W. C. Tzou, C. F. Yang, Y. C. Chen, P. S. Cheng, “Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition”, Journal of the European Ceramic Society, vol. 20, 2000, pp. 805-807.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊