跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪國麟
研究生(外文):Kuo-Lin Hung
論文名稱:可控制形貌奈米氧化鋅合成方法之研究
論文名稱(外文):Shape-controlled ZnO nanoparticles prepared by chemical precipitation method
指導教授:陳志恆陳志恆引用關係
口試委員:徐治平楊奉儒林景崎
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:可控制形貌氧化鋅多元醇模板溶液沉澱法
外文關鍵詞:shape-controlledzinc oxidepolyol templatesolution precipitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來由於奈米材料合成技術的研究,不同形貌奈米氧化鋅已被合成出來,例如奈米絲、奈米板及奈米管。當不同形貌氧化鋅粉體之單一維度尺度縮小到奈米級時,可能會導致氧化鋅表面性質及晶體結構發生變化,進而對氧化鋅的特性造成影響。氧化鋅對UV-Vis 範圍的吸光效率會明顯增強。此外,由於氧缺陷的存在,也會影響氧化鋅在光致發光上的特性表現。
奈米氧化鋅常見的化學合成方式有直接沉澱法、水熱合成法、化學液相沉積及溶膠-凝膠法等。本研究主要探討可控制形貌奈米氧化鋅合成方法之研究。本研究採用溶液沉澱法,以硝酸鋅為前驅物,添加尿素為鹼源,並以不同多元醇當模板,如:乙二醇(EG)、二甘醇(DEG)、三甘醇(TEG);經改變反應的條件,包括尿素濃度、反應時間、多元醇模板添加量,可合成出棒狀、片狀和針狀之鋅氧化物。
以SEM、XRD、FTIR、XPS、UV-Vis及PL方法,探討反應條件與不同多元醇模板對鋅氧化物形貌的影響機制。結果發現,多元醇模板EG和DEG添加量增加與尿素濃度減少時,合成之鋅氧化物形貌主要為棒狀結構,反之則為片狀。添加多元醇模板TEG所合成之鋅氧化物則主要為不規則片狀結構。不同形貌之鋅氧化物具有不同之紫外光可見光吸收及螢光放射之行為。


In recent years, the nano-zinc oxide with different morphology, such as nano-fiber, nano-plate and nano-tube, has been synthesized due to the development of nanomaterials technology. When one of the dimensions of zinc oxide scales down to nano range, the surface properties and crystal structure of zinc oxides may change with different morphology. The UV-vis absorption property of zinc oxide may markedly enhanced. In addition, the presence of oxygen defects will also affect the photoluminescence characteristics of zinc oxide.
Nano-zinc oxide are usually synthesized by direct precipitation, hydrothermal, chemical solution deposition method and sol-gel approaches. In this study, we investigated the shape-controlled ZnO nanoparticles prepared by chemical precipitation method. It was demonstrated that various shapes of ZnO, including nano-rod, nano-plate and needle, were affect by urea concentration, reaction time and the types of polyol template, such as ethylene glycol, diethylene glycol and triethylene glycol.
The samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-Visible (UV-Vis) and photoluminescence (PL), by which the effect of various polyol template on the morphology of zinc oxide was discussed. As the amounts of polyol template (EG and DEG) increased and the urea concentration decreased, the morphology of zinc oxide were mainly rod-like. On the other hand, as the amounts of polyol template decreased and the urea concentration increased, the morphology of zinc oxide were mainly in sheet. The morphology of zinc oxide synthesized with polyols template (TEG) was mainly irregular sheet. Zinc oxide with different morphologies showed different UV-visible absorption and fluorescence emission.



目錄
摘 要 ii
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2奈米氧化鋅結構與特性 1
1.3 奈米氧化物常見的合成方法 2
1.4 研究目的 4
第二章 文獻回顧與理論基礎 5
2.1 合成氧化鋅方法與原理 5
2.1.1 溶膠-凝膠法 5
2.1.2 溶液沉澱法 6
2.1.3 化學溶液沉積法(CBD) 6
2.1.4 電化學沉積法 7
2.2 模板對材料形貌之影響 7
2.2.2軟性分子模板控制氧化鋅形貌的應用 7
2.3 奈米材料之光學性質 11
2.3.1紫外光-可見光吸收的基本原理 11
2.3.2螢光發光的基本原理 13
2.3.3奈米氧化鋅的光學性質 15
第三章 實驗方法 16
3.1實驗藥品 16
3.2實驗流程 18
3.3實驗流程說明 19
3.4實驗設備 20
第四章 結果與討論 21
4.1多元醇模板對氧化鋅形貌與結構之影響 21
4.2 製備條件對氧化鋅形貌與結構之影響 32
4.2.1 多元醇模板EG 32
4.2.2多元醇模板DEG 38
4.2.3多元醇模板TEG 43
4.3 氧化鋅的生長機制 47
4.3.1尿素對鋅氧化物生長機制之影響 49
4.3.2多元醇模板EG對氧化鋅生長機制之影響 52
4.3.3多元醇模板DEG對氧化鋅生長機制之影響 56
4.3.4多元醇模板TEG對氧化鋅生長機制之影響 59
4.4高溫燒結之氧化鋅形貌 61
4.5鋅氧化物之光學性質 64
4.6 結論與建議 73
參考文獻 75

[1]Look, D.C., "Recent advances in ZnO materials and devices," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 80,no. 1-3, 2001, pp. 383-387.
[2]Dietl, T., H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," Science, vol. 287,no. 5455, 2000, pp. 1019-1022.
[3]Hosseini-Sarvari, M. and H. Sharghi, "ZnO as a new catalyst for N-formylation of amines under solvent-free conditions," Journal of Organic Chemistry, vol. 71,no. 17, 2006, pp. 6652-6654.
[4]Suchea, M., S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, "ZnO transparent thin films for gas sensor applications," Thin Solid Films, vol. 515,no. 2 SPEC. ISS., 2006, pp. 551-554.
[5]Peiró, A.M., P. Ravirajan, K. Govender, D.S. Boyle, P. O''Brien, D.D.C. Bradley, J. Nelson, and J.R. Durrant, "Hybrid polymer/metal oxide solar cells based on ZnO columnar structures," Journal of Materials Chemistry, vol. 16,no. 21, 2006, pp. 2088-2096.
[6]Ayudhya, S.K.N., P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, and P. Praserthdam, "Solvothermal synthesis of ZnO with various aspect ratios using organic solvents," Crystal Growth and Design, vol. 6,no. 11, 2006, pp. 2446-2450.
[7]Liu, D.P., G.D. Li, Y. Su, and J.S. Chen, "Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components," Angewandte Chemie - International Edition, vol. 45,no. 44, 2006, pp. 7370-7373.
[8]Schwartz, D.A., N.S. Norberg, Q.P. Nguyen, J.M. Parker, and D.R. Gamelin, "Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co 2+- and Ni2+-Doped ZnO Nanocrystals," Journal of the American Chemical Society, vol. 125,no. 43, 2003, pp. 13205-13218.
[9]Wang, L. and N.C. Giles, "Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy," Journal of Applied Physics, vol. 94,no. 2, 2003, pp. 973-978.
[10]Ryu, Y.R., S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, and H.W. White, "Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition," Journal of Applied Physics, vol. 88,no. 1, 2000, pp. 201.
[11]Wang, Z.L., "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16,no. 25, 2004, pp. R829-R858.
[12]黎佩玲, "奈米氧化鋅的製備與應用",中國紡織工業研究中心,2003。
[13]Liu, B. and H.C. Zeng, "Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm," Journal of the American Chemical Society, vol. 125,no. 15, 2003, pp. 4430-4431.
[14]Guo, L., Y.L. Ji, H. Xu, P. Simon, and Z. Wu, "Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure," Journal of the American Chemical Society, vol. 124,no. 50, 2002, pp. 14864-14865.
[15]Stöber, W., A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," Journal of Colloid and Interface Science, vol. 26,no. 1, 1968, pp. 62-69.
[16]Srikanth, C.K. and P. Jeevanandam, "Effect of anion on the homogeneous precipitation of precursors and their thermal decomposition to zinc oxide," Journal of Alloys and Compounds, vol. 486,no. 1-2, 2009, pp. 677-684.
[17]Zheng, M.J., L.D. Zhang, G.H. Li, and W.Z. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363,no. 1–2, 2002, pp. 123-128.
[18]Wu, C., X. Qiao, J. Chen, and H. Wang, "Controllable ZnO morphology via simple template-free solution route," Materials Chemistry and Physics, vol. 102,no. 1, 2007, pp. 7-12.
[19]Tian, Z.R., J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, and H. Xu, "Complex and oriented ZnO nanostructures," Nature Materials, vol. 2,no. 12, 2003, pp. 821-826.
[20]Usui, H., "Influence of Surfactant Micelles on Morphology and Photoluminescence of Zinc Oxide Nanorods Prepared by One-Step Chemical Synthesis in Aqueous Solution," The Journal of Physical Chemistry C, vol. 111,no. 26, 2007, pp. 9060-9065.
[21]Rawat, S.S. and A. Chattopadhyay, "Structural Transition in the Micellar Assembly: A Fluorescence Study," Journal of Fluorescence, vol. 9,no. 3, 1999, pp. p233-244.
[22]Pawar, R.C., J.S. Shaikh, P.S. Shewale, and P.S. Patil, "Characterization of zinc oxide nanoparticles synthesized by polymer assisted deposition method," Journal of Alloys and Compounds, vol. 509,no. 5, 2011, pp. 1716-1721.
[23]Tang, X., E.S. Choo, L. Li, J. Ding, and J. Xue, "One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications," Langmuir : the ACS journal of surfaces and colloids, vol. 25,no. 9, 2009, pp. 5271-5.
[24]Chen, Y., M. Kim, G. Lian, M.B. Johnson, and X. Peng, "Side Reactions in Controlling the Quality, Yield, and Stability of High Quality Colloidal Nanocrystals," Journal of the American Chemical Society, vol. 127,no. 38, 2005, pp. 13331-13337.
[25]柯以侃,吳明珠,"儀器分析",新文京開發出版有限公司,2004。
[26]Skoog, D.A., F.J. Holler, and S.R. Crouch, "Principles of Instrumental Analysis," Cengage Learning, vol.,no., 2007, pp. 367-371.
[27]Wahab, R., S.G. Ansari, Y.S. Kim, H.K. Seo, and H.S. Shin, "Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method," Applied Surface Science, vol. 253,no. 18, 2007, pp. 7622-7626.
[28]Vanheusden, K., W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79,no. 10, 1996, pp. 7983-7990.
[29]Vanheusden, K., C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Applied Physics Letters, vol. 68,no. 3, 1996, pp. 403-405.
[30]Feng, P., Q. Wan, and T.H. Wang, "Contact-controlled sensing properties of flowerlike ZnO nanostructures," Applied Physics Letters, vol. 87,no. 21, 2005, pp. 213111.
[31]Imai*, S.Y.a.H., "Growth conditions for wurtzite zinc oxide films in aqueous solutions," Journal of Materials Chemistry, vol. 12,no., 2002, pp. 3773-3778.
[32]Zhang, H., J. Feng, J. Wang, and M. Zhang, "Preparation of ZnO nanorods through wet chemical method," Materials Letters, vol. 61,no. 30, 2007, pp. 5202-5205.
[33]仲維,華素坤,"晶體生長型態學",1999。
[34]MatijeviC*, M.C.a.E., "Uniform Colloidal Zinc Compounds of Various Morphologies," Chemistry of Materials, vol. 1,no., 1988, pp. 78-82.
[35]Bitenc, M. and Z. Crnjakorel, "Synthesis and characterization of crystalline hexagonal bipods of zinc oxide," Materials Research Bulletin, vol. 44,no. 2, 2009, pp. 381-387.
[36]Liwei Lin, H.W., Masyoshi Fuji* , Minoru Takahashi, "Morphological control of ZnO particles synthesized via a new and facile aqueous solution route," Advanced Powder Technology, vol. 20,no., 2009, pp. 185-189.
[37]Japic, D., J. Antonio Paramo, M. Marinsek, Y.M. Strzhemechny, and Z. Crnjak Orel, "Growth-morphology-luminescence correlation in ZnO-containing nanostructures synthesized in different media," Journal of Luminescence, vol. 132,no. 6, 2012, pp. 1589-1596.






連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top