跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李牧容
研究生(外文):Mu-Jung Li
論文名稱:錳摻雜氮化銦薄膜磁各向異性與結構之分析
論文名稱(外文):Analysis of magnetic anisotropies and structural properties of Mn-implanted InN thin film
指導教授:張本秀
口試委員:余炳盛陳詩芸
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:氮化銦三五族化合物半導體磁各向異性超導體錳離子佈植
外文關鍵詞:InNⅢ-Nitride semiconductorSQUIDanisotropysuperconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究主要探討錳離子參雜濃度對氮化銦薄膜結構與磁各向異性的影響。 我們利用離子佈植方式參雜氮化銦薄膜研製成氮化銦錳薄膜,離子佈植劑量分別為1*1016cm-2 與8*1016cm-2。X光繞射儀(X-ray diffractionmeter,XRD)分析顯示氮化銦錳薄膜為c軸取向之烏采結構,由能量散佈能譜儀(EDX)半定量分析得知氮化銦錳薄膜之錳離子濃度分別約為0.1 at.%與1 at.%。
藉由超導量子干涉儀(SQUID)量測樣品的變溫磁化強度M可以得到隨溫度變化之關係曲線函數M(T)。我們以外加磁場B平行樣品c軸與垂直樣品c軸兩種量測模式分析,探討樣品正常態與超導態之磁各向異性;另外藉由零場冷卻(ZFC, zero field cooling)以及場冷卻(FC, field cooling)模式定性分析樣品超導態之磁通釘紮能力。我們得到以下之結論:
1.低錳離子濃度之氮化銦錳薄膜在3 K出現超導相變;高錳離子濃度之薄膜則出
現在2.8 K,其超導為第二類超導體; 各向異性參數(γ= )分析顯示高錳離子
濃度之薄膜各向異性參數(γ=3.2)大於低錳離子濃度之樣品(γ=2.9)。外加磁場B
平行樣品c軸之磁通釘紮能力,大於B垂直樣品c軸。
2.氮化銦錳薄膜正常態溫度區間之變溫磁化強度M(T)曲線函數可以朗之凡反磁
性(-Mo)與居里-魏斯定律擬合之。居里常數C值表示樣品具有之順磁磁矩之大小,高參雜之氮化銦薄膜有較大之C值。各向異性參數(γ= )分析顯示高錳離子濃度之薄膜各向異性參數(γ=1.68),大於低錳離子濃度之樣品(γ=1.09)。


InN thin films irradiated by Mn ion with different concentration were investigated here. InN thin films were grown on sapphire substrate with a 1.5 μm GaN buffer by molecular beam epitaxy (MBE). Mn ions were implanted in InN thin films with doses of 1*1016 cm-2 and 8*1016 cm-2 respectively. The room-temperature Hall mobility and carrier concentration were determined by Hall measurement with Van der Pauw geometry. The atomic percentage of Mn in InN increases with the dose concentration. The percentages were 0.1 at.% and 1 at. % espectively by EDX measurements.
Magnetic properties and Superconductivity Meissner effect have been measured by Superconducting quantum interference device (SQUID) measurements.
Anisotropic properties were characterized by the applied magnetic field parallel and vertical to the c-axis of InN thin films. The properties of flux pinning in mixed state were characterized by zero field cooling (ZFC) and field cooling (FC) methods.
Our results show that InN:Mn(0.1 at.% ) thin films shows superconductivity at 3K and InN:Mn(1 at.% ) thin films shows superconductivity at 2.8K with type II characteristics. The anisotropic parameters are 3.2 and 2.9 respectively. When the applied magnetic field parallel the c-axis of InN thin films, there are larger flux pinning effect.
The temperature-dependent magnetization curve in normal state can be fitted by Curie-Weiss Law and Langevin diamagnetic component. InN:Mn(1 at.% ) thin films show larger Curie constant than InN:Mn(0.1 at.% ). The anisotropic parameters of InN:Mn(1 at.% ) thin film is 1.68 and that of InN:Mn(0.1 at.% ) is 1.09 respectively.


目 錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 序論 1
1.1 前言 1
1.2 研究目的與動機 1
參考文獻 3
第二章 簡介 4
2.1磁性介紹 4
2.1.1 反磁性(Diamagnetism) 5
2.1.2 邁斯納效應(Meissner Effect) 5
2.1.3 順磁性(Paramagnetic) 5
2.1.4 鐵磁性(Ferromagnetism) 7
2.1.5 半導體的磁性 8
2.2超導體介紹 9
2.2.1 超導體的磁性質 10
2.2.2 第I型超導體 10
2.2.3 第II型超導體 11
2.2.4 鐵基超導體 11
2.2.5 磁通釘紮效應 13
2.3實驗文獻回顧 14
2.3.1超導氮化銦的邁斯納效應 14
2.3.2具有潛力的光電材料-氮化銦 16
參考文獻 18
第三章 實驗步驟與分析儀器 19
3.1實驗步驟 19
3.1.1試片製備 20
3.1.2離子佈值 21
3.1.3退火處理 22
3.2分析儀器 24
3.2.1 X光繞射儀 24
3.2.2掃描式電子顯微鏡 25
3.2.3 Van Der Paul 量測 26
3.2.4超導量子干涉儀 27
參考文獻 28
第四章 結果與討論 29
4.1 X-ray繞射儀量測及分析 29
4.2掃描式電子顯微鏡表面結構分析 32
4.3霍爾量測及其結果 43
4.4超導量子干涉儀量測及其結果 45
4.4.1樣品A M-T 曲線各向異性探討 45
4.4.2樣品D M-T 曲線各向異性探討 48
4.4.3樣品B M-T 曲線各向異性探討 51
4.4.4樣品G M-T 曲線各向異性探討 53
第五章 結論 56


[1]V.Yu. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmu‥ ller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status Solidi B 229 (2002) R1.
[2]J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu,W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80 (2002) 3967.
[3]E. Trybus, G. Namkoong, W. Henderson, W.A. Doolittle, R. Liu,J. Mei, F. Ponce, M. Cheung, F. Chen, M. Furis, A. Cartwright,J. Crystal Growth 279 (2005) 311.
[4]J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager III, E.E. Haller, A. Hai Lu, William.J. Schaff, W.K. Metzger, S. Kurtz, J. Appl. Phys. 94 (2003) 6477.
[5]A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94 (2003) 2779.
[6]B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85 (1999) 7727.
[7]V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75 (1994) 7365.
[8]郭昱賢,利用XRD分析成長於不同緩衝層/基板之氮化銦特性,碩士論文,國立臺北科技大學資源工程研究所,台北,2011。
[9]Chen, P. P., Makino, H. & Yao, T. MBE growth and magnetic properties of InMnN diluted magnetic semiconductor. Physica E: Low-dimensional Systems and Nanostructures 21, (2004) 983-986.
[10]William f Smith, Foundation of Material and engineering , 5th ed ,
[11]http://highscope.ch.ntu.edu.tw/wordpress/?p=1629
[12]C.Kittel, Introduction of Solid State Phys,7th ed,John Wiley & Sons inc,New York, (1997)
[13]Fritz London, Superfluids, Volume I, Macroscopic Theory of superconductivity, Reprinted by Dover, (1950),pp 34
[14]C.Kittel , Introduction of Solid State Phys,8th ed,John Wiley & Sons inc,(2005),pp.314
[15]C.Kittel, Introduction of Solid State Phys,8th ed,John Wiley & Sons inc,(2005),pp.337
[16]T. Dietl, H. Ohno et al., Science 287,1019, 2000.
[17]William f Smith, Foundation of Material and engineering , 5th ed
[18]Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono. Iron-Based Layered Superconductor: LaOFeP. Journal of American Chemical Society. 128 (31): (2006),10012–10013
[19]曹嶸、洪連輝,物理雙月刊,33卷 5期,417
[20]Takashi Inushima , Duncan K. Maude , Daisuke Muto , Yasushi Nanishi , “Meissner effect of superconducting InN” Phys. Status Solidi C 7, No. 5, (2010),1287– 1292
[21]Trybus, E., G. Namkoong, et al. "InN: A material with photovoltaic promise and challenges." Journal of Crystal Growth 288(2): (2006) 218-224.
[22]E. Trybus, G. Namkoong, W. Henderson, W.A. Doolittle, R. Liu,J. Mei, F. Ponce, M. Cheung, F. Chen, M. Furis, A. Cartwright,J. Crystal Growth 279 (2005) 311.
[23]A.J. McAlister, J.L. Murray, Binary Alloy Phase Diagrams, second ed, ASM International, Metals Park, 1990, p. 1956.
[24]I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60 (1986) R123.
[25]http://www.phys.sinica.edu.tw/~ibalab/IonImp/IonImp.htm
[26]Shannon, R.D.. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 32: (1976),751–767.
[27]William f Smith, Foundation of Material and engineering , 5th ed
[28]Azaroff, L. V.; R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, R. A. Young. X-ray diffraction. McGraw-Hill. (1974)
[29]Joseph Goldstein , Scanning Electron Microscopy and X-ray Microanalysis Third Edition,
[30]http://electron.mit.edu/~gsteele/vanderpauw/


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊