跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊承穎
研究生(外文):Chen Yin Chuang
論文名稱:利用聚電解質製備ZnO/二氧化鈦複合材料及其應用
論文名稱(外文):Preparation and application of ZnO/二氧化鈦 composite materials by polyelectrolyte.
指導教授:陳志恆陳志恆引用關係
口試委員:楊奉儒廖義田林景崎
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:163
中文關鍵詞:氧化鋅二氧化鈦聚電解質複合材料
外文關鍵詞:ZnOTiO2polyelectrolytecomposite materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複合材料在工業上的應用非常廣泛,因此類性的材料會保持著各組分材料的特性且具有組成分間協調作用所產生的綜合性能。氧化鋅為一種寬頻隙半導體材料,擁有高的電子束縛能量,並且有吸收紫外光之能力。但是由於氧化鋅是兩性物質,無法在強酸或強鹼的環境下存在,所以我們就利用二氧化鈦的特性來合成核殼結構,使氧化鋅可以在強酸或強鹼中並保有其原本的特性。本研究首先先利用溶膠凝膠法合成奈米氧化鋅粉末,接著使用三種不同的方法來合成氧化鋅/二氧化鈦的奈米複合材料。(1)利用溶膠凝膠法配合二氧化鈦前驅物合成氧化鋅/二氧化鈦的奈米複合材料;(2)利用聚電解質改變氧化鋅粉體表面電位,使二氧化鈦披覆在氧化鋅表面,形成氧化鋅/二氧化鈦的奈米複合材料。(3)以聚電解質及二氧化鈦前驅物透過溶膠凝膠法合成氧化鋅/二氧化鈦的奈米複合材料。結果顯示,此三種不同方式製備氧化鋅/二氧化鈦的奈米複合材料皆具有良好的批覆性,並得知方法(3)較方法(1)縮短約一半的反應時間,方法(2)利用聚電解質改變電位後可以快速的獲得以物理吸附的氧化鋅/二氧化鈦的奈米複合材料。

Composite materials have been attracting in industry and sciential research.Because this composition is not only maintaining the original chemistry characteristics for the materials, but also promoting more ability. Zinc oxid (ZnO) has several unique characteristics such as wide band gap, high electron binding energy, and good UV-resistance. Although ZnO can apply to variety fields, it is not suitable for operation in aqueous process with extreme pH due to amp-hoteric. Therefore, we synthesized ZnO/TiO2 core-shell structure to make ZnO which can maintain its original chemistry characteristics and operate with extreme pH. In this study, we synthesized the ZnO/TiO2 core-shell structure by the three kinds of methods. (1) synthesis of the ZnO/TiO2 by sol-gel method with ZnO nanoparticles and precursor of Ti (2) synthesis of the ZnO/TiO2 by polyelectrolyte with ZnO and TiO2 nanoparticles (3) synthesis of the ZnO/TiO2 by combining polyelectrolyte and sol-gel method with ZnO nano- particles and precursor of Ti. From the results, the ZnO/TiO2 core-shell structures could be synthesized successfully by this three kinds of methods and we discovered that the time of synthesis for method (3) was faster than method (1) .

目錄

摘 要 I
ABSTRACT II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1半導體材料 1
1.2 氧化鋅特性 2
1.3二氧化鈦性質 4
1.4研究目的 5
第二章 基礎理論及文獻回顧 7
2.1奈米材料 7
2.1.1奈米粉末(Nano powder) 8
2.1.2奈米纖維 (Nano Fiber) 9
2.1.3奈米薄膜(Nano Film) 10
2.2溶膠凝膠法基礎原理 10
2.3 聚電解質(Polyelectrolyte)基本性質 16
2.3.1電解質分類與應用 17
2.3.2聚電解質分散機制 20
2.3.3兩性聚電解質 23
2.4奈米複合材料 25
2.4.1核殼型奈米複合材料的分類 26
2.4.2核殼型奈米複合材料的合成方法 27
2.4.3 奈米微粒分散與聚集 28
2.4.4逐層自主裝合成核殼型奈米粒子 29
第三章 實驗方法 31
3.1實驗流程與儀器測量 31
3.1.1實驗藥品 31
3.2實驗儀器與特性分析 32
3.2.1微電腦雙pH控制器 32
3.2.2 X-RAY分析儀 32
3.2.3掃描式電子顯微鏡 33
3.2.4紫外光可見光光譜儀 34
3.2.5傅立葉紅外線光譜儀 35
3.2.6 表面電位及粒徑分析 35
3.2.7 X光電子能譜儀XPS 36
3.3實驗步驟與方法 37
3.3.1溶膠凝膠法製備氧化鋅奈米粒子 37
3.3.2溶膠凝膠法製備氧化鋅-二氧化鈦殼層奈米複合材料 37
3.3.3聚電解質合成氧化鋅-二氧化鈦殼層奈米複合材料 37
3.3.4聚電解質與溶膠凝膠法製備氧化鋅-二氧化鈦殼層奈米複合材料
38
第四章 結果與討論 43
4.1氧化鋅合成時間對氧化鋅性質之影響之探討 43
4.2氧化鋅/二氧化鈦殼層奈米複合材料結構分析與探討 55
4.2.1前驅物形成之二氧化鈦特性分析 55
4.2.2不同條件下對於殼核奈米結構之影響 57
4.2.2.1乙醇溶劑添加量之影響 57
4.2.2.2 pH值之影響 66
4.2.2.3異丙氧基鈦添加量之影響 78
4.2.2.4異丙醇添加量之影響 89
4.2.2.5反應時間之影響 98
4.2.2.6最佳參數之特性分析 107
4.3聚電解質製備氧化鋅/二氧化鈦殼層奈米複合材料分析 111
4.3.1市售二氧化鈦奈米粉末特性分析 111
4.3.2聚電解質合成奈米氧化鋅/二氧化鈦結構之分析 114
4.3.2.1聚電解質種類之影響 114
4.3.2.2 pH值之影響 125
4.3.2.3聚電解質添加量之影響 135
4.3.2.4奈米二氧化鈦添加量之影響 142
4.4利用電解質與溶膠凝膠法合成奈米氧化鋅/二氧化鈦複合材料分析
與探討 151
第五章 結論與建議 156
參考文獻 157


1.P.Alivisatos, A., Semiconductor clnsters,Nanocrystals,and Quantum Dots. JSTOR, 1996. 271: p. 933-937.
2.H. Kohjiro,K. Tohru ,S.Kazuhiro,S. Hideki, A.Hironori, Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials & Solar Cells, 2000(115-134).
3.Y.Chen, H. Koh, K. Park, K. Hiraga, Z.Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire:Growth and characterization. Applied Physics, 1998.
4.D.C.Look, , Recent advances in ZnO materials and devices. Materials Science and Engineering, 2001. B80 p. 383-387.
5.A. Tsukazaki ,T. Onuma , M. Ohtani , T.Makino, M. Sumiya , K. Ohtani Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005 4(1): p. 42-46.
6.V.Srikant.,D.R. Clarke, On the optical band gap of zinc oxide. Applied Physics, 1998. 83.
7.Q. Zhang, C.S.Dandeneau, X. Zhou, and G. Cao, ZnO Nanostructures for Dye-Sensitized Solar Cells. Advance Materials, 2009. 21: p. 4087-4108.
8.D.Tanasa, N.Vrieceanu, C.M.Hristodor, E.Popovici, F.Briza, A.pui, Zinc oxide-linen fibrous composites: Morphological, structural, chemical and humidity adsorptive attributes. Textile Research Journal, 2012. 82(8): p. 832-844.
9.D. W. Bahnemann, C.Kormann., and M.R.Hoffmann, Preparation and Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic Study , J .Phys. Chem., 1987. 91: p. 3789-3798.
10.L.Z.Huang,H.H.Chen, Structural transformation of ZnO nanostructures. 2007. 90(2).
11.S.J. Pearton, D.P. Norton, K. Ipa, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 2003. 34: p. 3-32.
12.H.M.Ozgur, H.Morloc, Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley-VCH, Weinheim, 2009.
13.X.Chen ,S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev, 2007. 107: p. 2891-2959.
14.N.Serpone, D.Lawless., R.Khairutdinov, Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Partical: Size Quantization or Direct Transitions in This Indirect Semiconductor. J.Phys. Chem., 1995. 99: p. 16646-16654.
15.A. Fujishima , X.Z. Donald, A. Tryk TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008: p. 515-582.
16.C.N.R.Rao, A.M., A.k.Cheetham, The Chemistry of Nanomater. Wiley-VCH p. 1-11.
17.趙以諾, 奈米級粉體製造技術與設備介紹. 機械工業雜誌, 2005: p. 140-150.
18.Zhang, J., et al., Synthesis of rare earth up-conversion material and application in the Dye-sensitized solar cells, 2012. p. 289-292.
19.S.S.Shin,D.W.Lee ,K.D. Hoe,P.J.Hoon, Surface modified TiO2 nanostructure with 3d urchin-like morphology for dye-sensitized solar cell application. Journal of Nanoscience and Nanotechnology, 2012. 12(2): p. 1305-1309.
20.C. Liewhiran, S.Serphin,S. Phanichphant, Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera (L.) Vent pulp as a dispersant. Current Applied Physic, 2006. 6: p. 499-502.
21.E.A.Meulenkamp, Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B 1998. 102: p. 5566-5572.
22.G.J. Lee, H.M.Lee., C.K.Rhee, Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochemistry Communications 2007. 9: p. 2514-2518.
23.H.S. Bae, M.K.Lee, W.W. Kim, C.K. Rhee, Dispersion properties of TiO2 nano-powder synthesized by homogeneous precipitation process at low temperatures. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003. 220: p. 169-177.
24.B. Zhao,H. QI,X.Liu and D.Xu, Measurement of adhesive force between single-walled carbon nanotube and Ti. Fullerenes Nanotubes and Carbon Nanostructures, 2012. 20(8): p. 750-754.
25.M.Shah, and A. Yadvendar., Carbon nanotube: A novel carrier for sustained release formulation. Fullerenes Nanotubes and Carbon Nanostructures, 2012. 20(8): p. 696-708.
26.M.Jonoobi, A.P. Mathew, and K.Oksman, Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crops and Products, 2012. 40(1): p. 232-238.
27.M.Biswal,S.Mohanty, and S.K. Nayak, Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites. Journal of Applied Polymer Science, 2012. 125(SUPPL. 2): p. E432-E443.
28.J. Vetter, H. J.Scholl , (TiCr)N coatings deposited by cathodic vacuum arc evaporation Surface and Coatings Technology, 1995. 74-75: p. 286-291.
29.A. M. Cassell, J.A.Raymakers, J. Kong and H.Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem., 1999. 103: p. 6484-6492.
30.T. Guo, P.N., A. Thess, D.T. Colbert, R.E. Smalley Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 1995. 243: p. 49-54.
31.J.Yin, Y.Lin, X.Cao,G.A. Yu, H.Tu, The synthesis and photochromic properties of two bis(phosphine) ligands based on dithienylethene backbone and their oxides, sulfurets and selenides. Dyes and Pigments, 2009. 81(2): p. 152-155.
32.Y.Zhang, .J.Yuan, Y.Cao,L. Song, X.Hu.,Photochromic behavior of Li-stabilized MoO3 sol-gels. Journal of Non-Crystalline Solids, 2008. 354(12-13): p. 1276-1280.
33.Z. S. Metaxa , J.W.T.Seo., M. S. Konsta-Gdoutos , M. C. Hersam , S. P. Shah ,Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement & Concrete Composites, 2012. 34: p. 612-617.
34.Z. Xu, C.Jing., J. Hao,Christos Christodoulatos,,G. P. Korfiatis,F. Li,and X. Meng, Effect of Bonding Interactions between Arsenate and Silver Nanofilm on Surface-Enhanced Raman Scattering Sensitivity. physical chemistry, 2012. 116: p. 325-329.
35.A.K. Rath, M.B., L. Martinez, F. Pelayo Garcia de Arquer, J. Osmond and G. Konstantatos, Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nature Photonics 2012.
36.D.B.Mitzi, Soiution Processing of Inorganic Materials A John Wikey & Sons, INC., PUBLICATION, 2009.
37.B.A.Jdayil,M.A.Al-Nakouan,M.H.El-naas,A.Khaleel, Rheological characteristics of nickel-alumina sol-gel catalyst. Fuel Processing Technology, 2012. 102: p. 85-89.
38.G.Michael, W. Peter, C.Martin, B. Fabian,D.Likiane,Y.Bing, G.Peter , Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Particle and Fibre Toxicology, 2012: p. 17.
39.P.J.Flory, Principles of Polymer Chemistry. Cornel University Press: Ithaca, 1953.
40.陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究。國立台灣科技大學碩士論文,2003。
41.C.Boo, S.Lee , M.Elimelech, Z.Meng, Colloidal fouling in forward osmosis: Role of reverse salt diffusion. Journal of Membrane Science, 2012. 390-391: p. 277-284.
42.B.B. Lucyanna,R.Gelen, C.Merce, R.Laia, L.I.Carmen, Structural versatility of bicellar systems and their possibilities as colloidal carriers. Pharmaceutics, 2011. 3(3): p. 636-664.
43.J.Liu, C. Wang, and Y. Wu, Dispersion polymerization of acrylamide with water-soluble chitosan as the stabilizer. Journal of Applied Polymer Science, 2012. 125(SUPPL. 2): p. E518-E525.
44.H.Izadi-Vasafi, G.M. Mohamad Sadeghi, and H. Garmabi, Synthesis of hydroxyl-terminated poly(lactic acid) via polycondensation: An equation to predict molecular weight based on the reaction parameters. Journal of Applied Polymer Science, 2012. 125(SUPPL. 2): p. E604-E615.
45.張婉珍,AA/DMC兩性聚電解質合成技術及其於CMP級二氧化矽研磨粉體分散穩定性應用研究。 國立臺北科技大學資源工程研究所碩士學位論文,2011。
46.王儷穎,在聚電解質溶液中的有效電荷。國立中央大學碩士論文,2006。
47.J.Choi and M.F. Rubner, Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules, 2005. 38(1): p. 116-124.
48.T.K.Wang and R.Audebert, Flocculation mechanisms of a silica suspension by some weakly cationic polyelectrolytes. Journal of Colloid And Interface Science, 1987. 119(2): p. 459-465.
49.S.Biggs,M.Habgood,G.J Jameson,Y.D.Yah, Aggregate structures formed via a bridging flocculation mechanism. Chemical engineering journal, 2000. 80(1-3): p. 13-22.
50.L. Spinosa, P.A.Vesilind, Sludge into Biosolids: Processing, Disposal and Utilization. IWA science publications,UK, 2001.
51.O.J.,Rojas, M.Ernstsson,R.D.Neuman, Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica. Langmuir, 2002. 18(5): p. 1604-1612.
52.S.Y. Lee and J. Gregory, The effect of charge density and molecular mass of cationic polymers on flocculation kinetics in aqueous solution. Water Supply, 1991. 9(1): p. 11-17.
53.R.I.S.Gill and T.M. Herrington, The flocculation of kaolin suspensions using polyethylenimine and cationic polyacrylamides of the same molar mass but different charge density. Colloids and Surfaces, 1987. 28(C): p. 41-52.
54.K.E.Bremmell, G.J. Jameson, and S. Biggs, Polyelectrolyte adsorption at the solid/liquid interface interaction forces and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 139(2): p. 199-211.
55.S.T. Dubas and J.B. Schlenoff, Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999. 32(24): p. 8153-8160.
56.P. Somasundaran and X. Yu, Flocculation/dispersion of suspensions by controlling adsorption and conformation of polymers and surfactants. Advances in Colloid and Interface Science, 1994. 53(C): p. 33-49.
57.G. Kramer and P. Somasundaran, Conformational behavior of polyelectrolyte complexes at the solid/liquid interface. Langmuir, 2002. 18(24): p. 9357-9361.
58.S.L.Clark, M.F. Montague, and P.T. Hammond, Ionic effects of sodium chloride on the templated deposition of polyelectrolytes using layer-by-layer ionic assembly. Macromolecules, 1997. 30(23): p. 7237-7244.
59.Cabot, B., A. Deratani, and A. Foissy, Adsorption of poly(vinylimidazoles) onto silica surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 139(3): p. 287-297.
60.K.A. Vaynberg, N.J.Wagern, R.Sharma, P.Martic, Structure and extent of adsorbed gelatin on acrylic latex and polystyrene colloidal particles. Journal of Colloid And Interface Science, 1998. 205(1): p. 131-140.
61.B Mahltig,J.F.Gohy, R.Jerome,M.Stamm, Diblock polyampholytes at the silicon-water interface: Adsorption as a function of block ratio and molecular weight. Journal of Polymer Science, Part B: Polymer Physics, 2001. 39(6): p. 709-718.
62.S.Neyret,L.Ouali, F.Candau, E.Pefferkorn, Adsorption of polyampholytes on polystyrene latex. Effect on the colloid stability. Revue de l''Institute Francais du Petrole, 1997. 52(2): p. 245.
63.W.A Bowma., M. Rubinstein, and J.S. Tan, Polyelectrolyte-Gelatin Complexation: Light-Scattering Study. Macromolecules, 1997. 30(11): p. 3262-3270.
64.Kamiyama, Y. and J. Israelachvili, Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte. Macromolecules, 1992. 25(19): p. 5081-5088.
65.A.V. Dobrynin, S.P. Obukhov, and M. Rubinstein, Long-range multichain adsorption of polyampholytes on a charged surface. Macromolecules, 1999. 32(17): p. 5689-5700.
66.許智雄,氧化鋅奈米粉體之製備與特性分析。國立成功大學碩士論文。2006。
67.M.Jones,Mechamocs of Composite Materials. Wiley New York, 1979.
68.G.K.Marzan, L.Lee., Core-shell nanoparticles, Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, California, 2004. 4: p. 199.
69.L Zhang, J.Wu, Y.Wang, Y.Long, N.Zhao, Combination of bioinspiration: A general route to superhydrophobic particles. Journal of the American Chemical Society, 2012. 134(24): p. 9879-9881.
70.H.Niu, Dizhang, Z.Meng, Y.Cai, Fast defluorination and removal of norfloxacin by alginate/Fe@Fe 3O 4 core/shell structured nanoparticles. Journal of Hazardous Materials, 2012. 227-228: p. 195-203.
71.E.M. Semenova, S.A.Vorobyova, A.I.Lesnikovich, J.A.Fedotova, V.G.Bayev Fabrication and investigation of magnetite nanoparticles with gold shell. Journal of Alloys and Compounds, 2012. 530: p. 97-101.
72.柯揚船,皮特斯壯, 聚合物-無機奈米複合材料. 五南出版社, 2004.
73.W.K.Lewis, A.T.Rosenberger, J.R.Gord, C.A.Crouse, K.A.ShiralFernando , M.J.Smith, Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. Journal of Physical Chemistry C, 2010. 114(14): p. 6377-6380.
74.J.Luo, L.Wang, D.Mott, P.N.Njoki, Y. Lin, Z.Xu, Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Advanced Materials, 2008. 20(22): p. 4342-4347.
75.C.Ozdemir, O.Akca, E.I.Medin , Biosensing Applications of Modified Core-Shell Magnetic Nanoparticles. Food Analytical Methods, 2012. 5(4): p. 731-736.
76.J.Kim, C.M.Lee, H.J.Jeong, D.W. Kim, K.Y.Lee, Elevated anti-inflammatory effects of eicosapentaenoic acid based self-aggregated glycol chitosan nanoparticles. Journal of Nanoscience and Nanotechnology, 2012. 12(3): p. 2672-2678.
77.V.V. Hardikar and E.Matijević, Coating of Nanosize Silver Particles with Silica. Journal of Colloid And Interface Science, 2000. 221(1): p. 133-136.
78.I.P. Santos, D.S.Koktysh, A.A.Manedov, M.Giersig, One-Pot Synthesis of Ag@TiO2 Core−Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir, 2000. 16(6): p. 2731-2735.
79.Q.Xie, J.Li, Q.Tian, R.Shi, Template-free synthesis of zinc citrate yolk-shell microspheres and their transformation to ZnO yolk-shell nanospheres. Journal of Materials Chemistry, 2012. 22(27): p. 13541-13547.
80.W.L.Lee, Y.C.Seh, E.Widjaia, H.C.Chong, S.C.J.Loo, Fabrication and drug release study of double-layered microparticles of various sizes. Journal of Pharmaceutical Sciences, 2012. 101(8): p. 2787-2797.
81.H.Wang, S.Wang, Z.Liao, P Zhao, W.Su, R.Niu, Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. International Journal of Pharmaceutics, 2012. 430(1-2): p. 342-349.
82.M. Koneswaran and R. Narayanaswamy, CdS/ZnS core-shell quantum dots capped with mercaptoacetic acid as fluorescent probes for Hg(II) ions. Microchimica Acta, 2012. 178(1-2): p. 171-178.
83.連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用。國立成功大學化工研究所碩士論文。2003。
84.E.Csapo, R.Parakfalvi, V.Horrnok, L.T.Toth, A.Sipos,M. Csete, Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloids and Surfaces B: Biointerfaces, 2012. 98: p. 43-49.
85.M.Rutnakornpituk,N.Puangsin,P.Theamdee, B.Rutnakornpituk, Poly(acrylic acid)-grafted magnetic nanoparticle for conjugation with folic acid. Polymer, 2011. 52(4): p. 987-995.
86.J.H.Fendler, Nanoparticles and Nanostructured Films: Preparation, Characterization and Application. Wiley-VCH, 1998.
87.W.J.Jiang, C.L. Wu, and R.R. Zhang, General assembly of organic molecules in core-shell mesoporous silica nanoparticles. Materials Letters, 2012. 77: p. 100-102.
88.L.Ding, C.Chen, J.Deng, W.Yang, Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through "click" onto grafting method and self-assembly. Polymer Bulletin, 2012: p. 1-18.
89.B.F.Caruso, Nanoengineering of Particle Surfaces. Advance Materials, 2001. 1.
90.A.S Zahr, C.A. Davis and M.V. Pishko, Macrophage Uptake of Core−Shell Nanoparticles Surface Modified with Poly(ethylene glycol). Langmuir, 2006. 22(19): p. 8178-8185.
91.F.Caruso, R.A. Caruso and H. Mohwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111-1114.
92.Sukhorukov, G.B., et al., Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 137(1–3): p. 253-266.
93.Xuan, S., et al., Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir, 2009. 25(19): p. 11835-11843.
94.Meulenkamp, E.A., Synthesis and Growth of ZnO Nanoparticles. The Journal of Physical Chemistry B, 1998. 102(29): p. 5566-5572.
95.Keis, K., et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 57-64.
96.Lopez, T., et al., FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol-gel. Materials Chemistry and Physics, 1992. 32(2): p. 141-152.
97.Ulrike Diebold, T.E.M., TiO2 by XPS. American Vacum Society, 1998.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top