跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫福麟
研究生(外文):Fu-Lin Wen
論文名稱:資源化矽切割廢料之金屬去除
論文名稱(外文):Metal removal for recycling of silicon sawing waste
指導教授:蔡子萱蔡子萱引用關係
口試委員:吳永富鄭大偉藍崇文
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:碳化矽金屬回收切割廢料
外文關鍵詞:siliconsilicon carbidemetalrecyclingsawing waste
相關次數:
  • 被引用被引用:4
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽晶棒切割成晶圓的過程產生了大量的切割廢料,若能回收處置,可達到環保與降低成本的目的。為了提升所回收的矽與碳化矽粒子之後續應用價值,金屬的去除非常重要。本實驗結果發現離心法可分選矽、碳化矽;然而,輔以磁力作用時,僅在廢料/稀釋劑比值為3/7下,方能使富矽粉體中的鐵初步被去除。酸洗研究上發現,硫酸對金屬雜質均有良好的去除效果,可達鐵殘餘量28.83ppm;進一步利用擦洗作為前處理可使鐵殘餘量降低至25.99ppm。反應動力學結果可知,硫酸進行酸洗有較高反應階數,亦即對濃度較敏感;檸檬酸會有最低活化能、硝酸則有最高活化能。此外,使用超音波震盪混合可在短時間移除大量的鐵,但是長時間下,採用攪拌器進行混搖的除鐵效果好。本研究成功利用磁力輔助離心力法分選切削廢料中矽與碳化矽,並初步去除鐵雜質;搭配酸洗法可將金屬雜質殘餘量降至100ppm以下,且使用的酸濃度甚低,可免除對環境之傷害,達到製程簡化、成本低廉之目標。

Silicon ingot cut wafer produce abundant silicon sawing waste during the sawing process. If it can be recycled, it can reach the purpose of environmental protection and the reduction of cost. In order to promote the post application value of silicon and silicon carbide, the removal of metal impurities is essential when recycling silicon sawing waste. The experimental results show that silicon and silicon carbide can be separated by using centrifugation. When recycling of silicon sawing waste was performed by using the centrifugation in a magnetic field, the iron can be removed from silicon powders by the ratio of waste to solvent is 3/7. In addition, this study show that H2SO4 aqueous solution could react with the waste rapidly and remove most of metal. The residual iron in the silicon powder could reach 28.83ppm. If the sawing waste was pretreated by use of scrubber, the residual iron could reach 25.99ppm.The analysis of chemical kinetics show that the reaction order for metal oxidation in sulfuric acid is higher than that in hydrochloric acid, citric acid or nitric acid, meaning that the reaction in sulfuric acid is more sensitive to the concentration of hydrogen ion. The reaction of citric acid to metal oxidation has the lowest activation energy. The reaction of nitric acid to metal oxidation has the highest activation energy. The research shows that a ultrasonic cleaner removed most iron in a short period of time. However, in a long period of time, the effectiveness of removing iron by using a stirrer is better than using a shaker or an ultrasonic cleaner. In this research, we separated silicon and silicon carbide and removed iron impurities from the cutting waste successfully by using the centrifugation in a magnetic field. By acid treatment, we can reduce iron impurities to less than 100ppm. Because the concentration of acid is low, it can prevent damage to the environment, and it can realize the target of simplifying the process and reducing cost.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 矽基太陽能電池的重要性 1
1.2 矽原料的現況 3
1.3 切割製程與廢料 5
1.4 研究動機和目的 8
第二章 文獻回顧 9
第三章 理論分析與技術 20
3.1 酸洗原理 20
3.2 離心原理 22
3.3 磁作用原理 25
3.4 擦洗原理 27
第四章 實驗設備與方法 28
4.1 實驗藥品與材料 28
4.2 實驗項目與程序 31
4.2.1 矽泥組成分析 32
4.2.2 矽泥離心分選 33
4.2.3 酸洗 34
4.2.4 擦洗 36
第五章 實驗結果與討論 37
5.1 離心法 38
5.2 酸洗法 50
5.2.1 酸的種類和時間效應 50
5.2.2 比例、濃度與溫度效應 56
5.3 酸洗反應動力學 67
5.4 混搖方式對酸洗去除金屬之影響 77
第六章 結論 86
參考文獻 87
符號彙編 90


[1]楊德仁,太陽能電池材料,臺北:五南圖書出版公司,2008,第7-14頁。
[2]J. W. Arnulf, "Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production," Solar Energy Materials and Solar Cells, vol.95, no. 6, 2011, pp. 1509-1517.
[3]康志堅、王孟傑、李雯雯,矽晶太陽能光電產業低成本化技術展望,臺北:工業技術研究院,2008,第1-3 - 4-3頁。
[4]J. Deubener, G. Helsch, A. Moiseev and H. Bornhoft, "Glasses for solar energy conversion systems," Journal of the European Ceramic Society, vol.29, no. 7, 2009, pp. 1203-1210.
[5]G. Coso, C. Canizo and A. Luque, "Radiative energy loss in a polysilicon CVD reactor," Solar Energy Materials and Solar Cells, vol.95, no. 4, 2011, pp. 1042-1049.
[6]D. Sarti and R. Einhaus, "Silicon feedstock for the multi-crystalline photovoltaic industry," Solar Energy Materials and Solar Cells, vol.72, no. 1-4, 2002, pp. 27-40.
[7]W. Wang, Z.X. Liu , W. Zhang , Y.H. Huang and D.M. Allen, "Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers," CIRP Annals - Manufacturing Technology, vol.60, no. 1, 2011, pp. 255-258.
[8]T. Liedke and M. Kuna, "A macroscopic mechanical model of the wire sawing process," International Journal of Machine Tools and Manufacture, vol.51, no. 9, 2011, pp. 711-720.
[9]T. H. Tsai, "Iron Removal during Recovery of Silicon from Sawing Waste by Applying Magnetic Field," Separation Science and Technology, vol.46, no. 5, 2011, pp. 702-707.
[10]T. H. Tsai, " Modified sedimentation system for improving separation of silicon and silicon carbide in recycling of sawing waste," Separation and Purification Technology, vol. 78, no. 1, 2011, pp. 16-20.

[11]V. K. Kapur and A. K. Khanna, "Process for recovery of high purity silicon," U.S. Patent, no. 4,388,080, 1983.
[12]M. Horio, "Recycling system of wire saw abrasive grain slurry and centrifugal separators therefor," U.S. Patent, no. 6,615,817, 2003.
[13]Y. C. Lin, T. Y. Wang, C. W. Lan, and C. Y. Tai, "Recovery of silicon powder from kerf loss slurry by centrifugation," Powder Technology, vol. 200, no. 3, 2010, pp. 216-223.
[14]Y. C. Lin, and C. Y. Tai, "Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method," Separation and Purification Technology, vol. 74, no. 2, 2010, pp. 170-177.
[15]Y. F. Wu, and Y. M. Chen, "Separation of silicon and silicon carbide using an electrical field," Separation and Purification Technology, vol. 68, no. 1, 2009, pp. 70-74.
[16]S. Nishijima, Y. Izumi, S. Takeda, H. Suemoto, A. Nakahira, and S. Horie, "Recycling of abrasives from wasted slurry by superconducting magnetic separation," Ieee transactions on applied superconductivity, vol. 13, no. 2, 2003, pp. 1596-1599.
[17]T. Y. Wang, Y. C. Lin, C. Y. Tai, R. Sivakumar, D. K. Rai and C. W. Lan, "A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications," Journal of Crystal Growth, vol. 310, no. 15, 2008, pp. 3403-3406.
[18]M. S. Kong, H. C. Jung, H. S. Hong, G. S. Kim and H. S. Chung, "A study of hot consolidation for recycled silicon power," Current Applied Physics, vol. 11, no. 1, 2011, pp. S54-S58.
[19]S. Samal, "The dissolution of iron in the hydrochloric acid leach of titania slag obtained from plasma from plasma melt separation of metalized ilmenite," Chemical Engineering Research and Design, vol. 89, no. 10, 2011, pp. 2190-2193.
[20]X. Gu, D. Yang and D. Que, "Acid leaching in refining metallurgic silicon," 3rd China Solar Photovoltaic Conference , Changzhou, 2008, pp.266-270.
[21]A. A. Nayl, N. S. Awwad and H. F. Aly, " Kinetics of acid leaching of ilmenite decomposed by KOH Part 2. Leaching by H2SO4 and C2H2O4," Journal of Hazardous Materials , vol. 168, no. 2-3, 2009, pp. 793-799.
[22]胡之德、關祖京,分析化學中的溶劑萃取,北京:科學出版社,2001,第3-4頁。
[23]張斌、陳啟元,「超聲波在濕法冶金中的應用發展」,中南大學學報,第二十卷,第三期,2001,第1頁。
[24]吳文雄,離心分離,臺北:財團法人徐氏基金會出版部,1973,第1-9頁。
[25]王淀佐、邱冠周、胡岳華,資源加工學,北京:科學出版社,2008,第158-159頁。
[26]汪靈、李萍、殷德強、孔芹、范博文,「沐川黃丹石英砂岩加工玻璃工業用石英砂試驗研究」,礦物岩石,第三十卷,第四期,2010,第1-6頁。
[27]S. Kotrly and L. Šůcha, Handbook of chemical equilibria in analytical chemistry, New York: John Wiley & Sons, 1985, pp.34-247.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊