跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭雅雯
研究生(外文):Ya-Wen Guo
論文名稱:岩石風化之力學特性與微組構變化暨吸附二氧化碳能力之研究
論文名稱(外文):Variation on mechanical characteristics and microstructure during rock weathering process associated with carbon dioxide fixation
指導教授:翁祖炘翁祖炘引用關係王泰典
口試委員:李宏輝董家鈞丁原智
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:人工風化力學特性微觀組構
外文關鍵詞:rockweatheringmechanical parametersmineralogical properties
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
風化作用為岩石弱軟化的主因,對於岩體工程設計及其安定性影響深遠。岩石風化不僅是影響工程生命週期的物理指數與力學特性的變化,更是影響地球萬物生息永續發展的化學組成的循環。本研究透過人工風化循環試驗,探求風化過程岩石指數及力學特性之關係,據以探討(1)風化循環岩石微組構與力學特性之變化之關係;(2)人工風化與碳循環之關係;以及(3)風化作用指標試驗及模擬驗證等研究主題,建立岩石風化程度與力學特性變化的關係,並深入探討岩石風化程度量化評估指標以及對應的吸附二氧化碳能力。
研究結果顯示,砂頁岩互層層面間的鍵結強度較弱,遇水後膠結物溶出而黏結強度下降,成為循環過程主要的破壞面,抗風化能力極低。大理岩循環過程方解石溶解,導致孔隙率及吸水率上升,晶粒間接觸變少,造成晶粒間黏結力下降,因此歷經循環後,岩材明顯的弱軟化。蛇紋岩循環過程會發生礦物溶解及礦物相轉變的作用。溶解作用導致晶粒間空隙增加而接觸變少,造成岩材弱軟化。而推論循環過程中相轉變形成的石英則有助於晶粒間之黏結,可增加晶粒間的黏結能力。因此在循環過程中抗風化能力及力學特性有週期性變化,且抗風化能力及力學強度皆有增加現象。
由砂頁岩及蛇紋岩吸附二氧化碳能力顯示,岩石中未形成碳酸鹽類的鎂元素及鈣元素,皆有吸附二氧化碳的能力,且碳化能力隨循環次數而增加。由蛇紋岩之吸附二氧化碳能力及力學參數之迴歸分析顯示,吸附二氧化碳能力與力學特性有高度相關。推論單一岩材乃因循環過程與二氧化碳作用形成礦物相轉變,導致一般指數及微觀組構變化,間接造成岩材力學特性之改變。
模擬分析結果顯示,大理岩介觀材料以及微觀顆粒的膠結強度會隨循環過程下降,而蛇紋岩介觀材料以及微觀顆粒的膠結強度會隨循環過程上升,此模擬結果與實驗所得相同。


In nature, weathering reduces rock strength and increases its deformability. It is, therefore, an important factor which needs to be considered for designing safe engineering structures. The rock weathering zone and degree of weathering are also important for geological investigation.
This study aims to clarify weathering mechanism of rock and to determine the variation of the mechanical and the mineralogical properties during weathering process which produced by means of artificial circulations on rapidly changing of environmental temperature and moisture conditions.
Test results show that intercalated of sandstone and shale has weak bonding strength for the inter-bed and weather rapidly as the cementing material dissolved in water. The plane paralleling the inter-bad is the critical one for weathering failure. For marble, calcite dissolves during artificial weathering cycle and leads to increase in porosity and water absorption. Rock strength is reduced due to descending grain contacts. For serpentinite, mineral dissolution and phenomenon of phase transition are observed during artificial weathering, which increases porosity in mineral grains and reduces the mineral contacts. We infer that the quartz formed from phase transition is helpful for the bonding between grains. Therefore, the strength of weathering resistance and mechanical properties exhibit cyclic variation with a raising trend.
Test results for the capability of carbon dioxide adsorption show that magnesium and calcium in the intercalated of sandstone and shale and the serpentinite can absorb carbon dioxide with an increasing as the artificial weathering cycles. Results of regression analysis show that the capabilities of carbon dioxide adsorption highly correlate with their mechanical properties. It is believed that mineral phase transition occurs during artificial weathering process, leads to variation on physical index and microstructure of the rocks and changing their mechanical characteristics.
Numerical simulation results show that the strength of the meso-scale specimen and compositional micro-grain for marble descend during artificial weathering process, and conversely for serpentinite, which match with laboratory results.



摘 要 I
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容 2
第二章 文獻回顧 4
2.1 岩石指數與力學特性 4
2.2 風化程度與岩石力學特性及微觀組構 5
2.2.1 岩石風化機制與影響因素 5
2.2.2 風化對岩石力學特性及微觀組構影響 6
2.3 礦物碳酸化與碳循環 8
2.3.1 礦物碳酸化 8
2.3.2 岩石風化與碳循環 9
2.4 風化程度的描述與評估 12
第三章 研究項目規劃 27
3.1 室內試驗規劃與方法 27
3.1.1 一般指數 27
3.1.2 岩石微觀特性試驗 28
3.1.3 力學試驗 29
3.1.4 吸附二氧化碳試驗 30
3.2 試體製備與其風化程度控制 31
3.2.1 岩石種類與試體製備 31
3.2.2 試體規格及製備 32
3.2.3 風化環境模擬 33
3.3 數值模擬 33
第四章 實驗結果 42
4.1 一般指數 42
4.1.1 砂頁岩 42
4.1.2 大理岩 42
4.1.3 蛇紋岩 43
4.2 力學特性 45
4.2.1 砂頁岩 45
4.2.2 大理岩 45
4.2.3 蛇紋岩 46
4.2.4 綜合岩性比較 47
4.3 微觀組構 47
4.3.1 砂頁岩 47
4.3.2 大理岩 48
4.3.3 蛇紋岩 49
4.4 礦物碳酸化試驗結果 50
第五章 討論 70
5.1 一般指數及碳化能力與力學特性之相關性 70
5.2 岩石風化過程力學特性與微觀組構關係及其變化之探討 71
5.2.1 砂頁岩 71
5.2.2 大理岩 71
5.2.3 蛇紋岩 72
5.2.4 綜合岩性探討 72
5.3 岩石風化與吸附能力之探討 73
5.4 模擬分析 73
5.4.1 數值模擬建立 74
5.4.2 數值分析結果與探討 75
第六章 結論與建議 83
6.1 結論 83
6.2 建議 85
附件一 岩石顆粒面積比與堆疊指數關係之探討_以水璉礫岩為例 92
附件二 岩石薄片影像 107



1.王泰典、詹佩臻、闕禮琳、羅偉、翁祖炘,「人造風化環境水璉礫岩力學特性與岩象變化之探討」,台灣公共工程學刊,審稿中。
2.郭雅雯、蕭宇翔、王泰典、吳禮浩,「岩石顆粒面積比與堆疊指數關係之探討_以水璉礫岩為例」,第十四屆大地工程學術研討會論文摘要集,桃園,2011,第113頁。
3.郭雅雯、詹佩臻、王泰典、翁祖炘,「木山層砂岩力學強度弱軟化與岩象組構變化關係之探討」,中國礦冶工程學會九十八年年會手冊,苗栗,2009,第77頁。
4.詹佩臻、闕禮琳、王泰典、羅偉、翁祖炘,「水璉礫岩人工風化下單壓強度弱軟化之探討」,2009資源與環境學術研討會,花蓮,2009,第401-408頁。
5.闕禮琳、詹佩臻、王泰典、羅偉、翁祖炘,「風化弱軟化岩石引致邊坡失穩案例探討-以水璉礫岩邊坡為例」,鑛冶,第五十三卷,第四期,2009,第67-76頁。
6.闕禮琳、詹佩臻、王泰典、羅偉、翁祖炘,「人工風化環境下水璉礫岩岩象與力學特性之變化」,中國礦冶工程學會97年年會手冊,台北,2008,第59頁。
7.許珮筠、郭雅雯、王泰典、翁祖炘,「含泥量對大寮層砂岩力學特性與抗風化能力的影響」,2011資源工程研討會論文摘要集,台南,2011,第144頁。
8.詹佩臻、王泰典、翁祖炘、鄭富書、吳禮浩,「利用地質統計分析探討碎屑沉積岩遇水弱軟化影響因子」,2010岩盤工程研討會論文集,高雄,2010,第417-424頁。
9.袁寧、陳宏宇,「台北盆地東側基盤砂岩壓縮強度與組構之研究」,1996岩盤工程研會論文集,台北,1996,第405-414頁
10.蔣本基等,「新穎二氧化碳回收固定技術開發及封存技術評估、利用礦物鹼性固體廢棄物為吸附劑進行二氧化碳封存技術評估」,環保署/國科會空污防制科研合作計畫,2006。
11.詹佩臻,海岸山脈邊坡穩定特性之探討-以水璉礫岩為例,碩士論文,國立臺北科技大學資源所,台北,2009。
12.洪如江,初等工程地質學大綱,台北:地工技術研究發展基金會,2010。
13.翁孟嘉,麓山帶砂岩之力學特性及其與微組構關係研究,博士論文,國立台灣大學土木工程學系,台北,2002。
14.胡哲燁,台北市南港地區軟弱砂岩之特性研究,碩士論文,國立台灣大學地質學研究所,台北,1997。
15.熊鴻嘉,新竹寶山地區卓蘭層砂岩岩象與單壓強度之研究,碩士論文,國立中央大學應用地質研究所,桃園,1997。
16.朱凌毅,砂岩弱化微觀機制之實驗研究,碩士論文,國立台灣大學土木工程學研究所,台北,1998。
17.鄭孟龍,影響砂岩強度之組構要素,碩士論文,國立台灣大學地質學研究所,台北,1999。
18.李宏輝,砂岩力學行為之微觀機制-以個別元素法探討,博士論文,國立台灣大學土木工程學系,台北,2008。
19.郭雅雯,風化過程砂岩微觀組構與力學特性-以木山層為例,專題報告,國立臺北科技大學材料及資源工程系,台北,2010。
20.郭耿佑,鈣矽石碳酸化機制之探討,碩士論文,國立臺灣大學工學院化學工程學研究所,台北,2009。
21.蕭敬達,蛇紋石製氫氧化鎂封存二氧化碳之研究及矽酸鋰型二氧化碳吸收劑的開發,碩士論文,國立成功大學化學工程學系,台南,2008。
22.潘國樑,工程地質特論,台北:五南圖書出版股份有限公司,2007,第24-28頁。
23.吳紀聖,「從全球碳質量與能量均衡的觀點看待二氧化碳溫室效應」,國立臺灣大學「台大工程」學刊,第八十四期,民國九十一年二月,第103-110頁。
24.邱冬生,莊大方,胡云鋒等,「中國岩石風化作用所致的碳彙能力估算」,地球科學-中國地質大學學報, 第29卷,第二期,2004,第177-182頁。
25.T. Kojima, A. Nagamine, N. Ueno and S. Uemiya, "Absorption and fixation of carbon dioxide by rock weathering," Energy Convers. Mgmt., Vol. 38, suppl., 1997, pp. S461-S466.
26.F. G. Bell, "The physical and mechanical properties of the fell sandstones, Northumberland, England," Engineering Geology, vol. 12, 1978, pp. 1-29.
27.L. Dobereiner and M. H. De Freitas, "Geotechnical properties of weak sandstone," Geotechnique, vol. 36, no. 1, 1986, pp. 79-94.
28.F. G. Bell and M. G. Culshaw, " A survey of the geotechnical properties of some relatively weak Triassic sandstones," The Engineering Geology of Weak Rock, vol. 8, 1993, pp. 139-148.
29.R. Ulusay, K. Tureli and M. H. Ider, "Prediction of engineering properties of selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques," Engineering Geology, vol. 37, 1994, pp. 135-157.
30.F. G. Bell and M.G. Culshaw, "Petrographic and engineering properties of sandstones from the Sneinton Formation, Nottinghamshire," Quarterly Journal of Engineering Geology, vol. 31, 1998, pp. 5-19.
31.S. W. Campbell, "Chemical weathering associated with tafoni at PAPAGO PARK, central Arizona," Earth Surface Processes Landform, vol. 24, 1999, pp. 271-278.
32.J. J. McAlister and B.J. Smith, "Selective of ammonium acetate, hydroxylamine hydrochloride and oxalate/ascorbic acid solutions for the speciation of Fe, Mn, Cu, Ni, and Al in early tertiary paleosols," Microchemical Journal, vol. 63, 1999, pp 415-426.
33.B. J. Smith, J.J. McAlister, J.A. Baptista Neto and M.A.M. Silva, "Post-depositional modification of atmospheric dust on a granite building in central Rio de Janeiro: implications for surface induration and subsequent stone decay," Building Stone Decay, vol. 271, 2007, pp. 153-166.
34.A. V. Turkington and T.R. Paradise, "Sandstone weathering:a century of research and innovation," Geomorphology, vol. 67, 2005, pp. 229-253.
35.A. Schedl, A.K. Kronenberg and J. Tullis, "Deformation microstructures of Barre granite: an optical SEM and TEM study," Tectonophysics, vol. 122, 1986, pp. 149-164.
36.T. Engelder, R. Plumb, "Changes in In situ ultrasonic properties of rock on strain relaxation," Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 21,no. 2, 1984, pp. 75-82.
37.J. R. McWilliams, "The role of microstructure in the physical properties of rock. Testing techniques for rock mechanics," ASTM STP, vol. 402, 1966, pp. 175-189.
38.L. M. O. Sousa, L. M. Suarez del Rio, L. Lope Calleja, G. Vicente, V. G. R. Ruiz e Argandofia and A. R. Rey, "Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites," Engineering Geology, vol. 77, 2005, pp. 153-168.
39.R. ISRM, In E. T. Brown (Ed.), SRM suggested methods: Rock characterization, testing and monitoring, London: Pergamon Press, 1981, pp. 211.
40.A. S. Gupta and K.S. Rao, "Weathering effects on the strength and deformational behavior of crystalline rocks under uniaxial compression state," Engineering Geology, vol. 56, 2000, pp. 257-274.
41.E.A.G. Marques, E. V. Barroso, A. P. Menezes Filho and E. do A. Vargas Jr, "Weathering zones on metamorphic rocks from Rio de Janeiro—Physical, mineralogical and geomechanical characterization," Engineering Geology, vol. 111, 2010, pp. 1-18.
42.V. Rajamani, Jayant K. Tripathi and V.P. Malviya, "Weathering of lower crustal rocks in the Kaveri river catchment, southern India: Implications to sediment geochemistry," Chemical Geology, vol.265, 2009, pp. 410-419.
43.M. Kakizawa, A. Yamasaki and Y. Yanagisawa, "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, vol. 26, 2001, pp. 341-54.
44.S. Teir, S. Eloneva, C. J. Fogelholm and R. Zevenhoven, "Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions," Energy Conversion and Management, vol. 47, 2007, pp. 3059-3068.
45.S. Teir, S. Eloneva, C. J. Fogelholm and R. Zevenhoven, "Fixation of carbon dioxide by producing hydromagnesite from serpentinite," Applied Energ, vol. 86, 2009, pp. 214-218.
46.F. Goff and K. S. Lackner, "Carbon dioxide sequestering using ultramafic rocks," Environ Geosci, vol. 47, no. 3, 1998, pp. 89-101.
47.M. E Raymo, W. F. Ruddiman, "Tectonic forcing of late Cenozoic climate," Nature, vol. 359, 1992, pp. 117-122.
48.Z. Q. Yao, G. Q. Xiao and M. Y. Liang, "Global cooling controls on the chemical weathering as evidenced from the Plio-Pleistocene deposits of the North China Plain," Chinese Sci Bull, vol. 55, 2010, pp. 787-790.
49.J. Gaillardet, B. Dupre, P. Louvat and C. J. Allegre, "Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers," Chem Geol, vol. 159, 1999, pp. 3-30.
50.H. H. Schopka , L. A. Derry and C. A. Arcilla, "Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines," Geochimica et Cosmochimica Acta, vol. 75, 2011, pp. 978-1002.
51.J.M. Ketzer, R. Iglesias, S. Einloft, J. Dullius, R. Ligabue and V. de Lima, "Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil," Applied Geochemistry, vol. 24, 2009, pp. 760-767.
52.R. A. Berner and A. C. Lasaga, "Modeling the geochemical carbon cycle," Scientific American, Vol. 260, No. 3, 1989, pp. 74-81.
53.G. E. Wickham, H.R. Tiedeman and E.H. Skinner, "Support determinations based on geologic predictions," In: Proceedings of the 1st North America rapid excavation and tunneling conference AIIME, vol. 1, 1972, pp. 43-64.
54.Z. T. Bieniawski, "Engineering classification of jointed rock masses," Trans S Afr Inst Civ Eng, vol. 15, 1973, pp. 335-344.
55.Z. T. Bieniawski, Engineering rock mass classification, New York:McGraw Hill, 1989, pp. 237.
56.G. Dagdelenler, E. A. Sezer and C. Gokceoglu, "Some non-linear models to predict the weathering degrees of a granitic rock from physical and mechanical parameters," Expert Systems with Applications, vol. 38, no. 6, 2011, pp. 7476-7485.
57.F. Arıkan, R. Ulusay, N. Aydın, "Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system," Bull Eng Geol Environ, vol. 66, 2007, pp. 415-430.
58.A. Parker, "An index of weathering for silicate rocks," Geol. Mag, vol. 107, 1970, pp. 501-504.
59.K. Miura, "Weathering in plutonic rocks (Part I)—weathering during the late pliocene of gotsu plutonic rocks," J Soc Eng Geol, vol. 3, 1973.
60.A. P. W. Hodder, "Thermodynamic interpretation of weathering indices and its application to engineering properties of rocks," Engineering. Geology, vol. 20, 1984, pp. 241-251.
61.H. W. Nesbitt, "Mobility and fractionation of rare earth elements during weathering of a granodiorite," Nature, vol. 279, 1979, pp. 206-210.
62.J. J. Middelburg, C. H. Van Der Weijden, J. R. W. Woittiez, "Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks," Chem Geol, vol. 68, 1988, pp. 253-273.
63.S. Y. Lee, S. J. Kim, M. H. Baik, "Chemical weathering of granite under acid rainfall environment," Korea Environ Geol, vol. 55, 2008, pp. 853-862.
64.D. Al-Qudami, W. M. Shehata, A. A. Al-Harthi, A. Sabtan, "On weathering of syenite under arid conditions," Bull Int Assoc Eng Geol, vol. 56, 1997, pp. 3-8.
65.S. Ceryan, S. Tudes, N. Ceryan, "A new quantitative weathering classification for igneous rocks," Environ Geol, vol. 55, 2008, pp. 1319-1336.
66.P. C. Chan, S. J. Lyu, F. C. Jeng, T. T. Wang, T. H. Ueng, (2011). "Factors dominating deterioration of clastic sedimentary rocks," 12th International Congress on Rock Mechanics, October 18~21, China, Beijing
67.P.C. Chan, Wang T.T., Lo W., Ueng T.H., (2010). “Slope Instability Associated with Rock Weakening and Softening Caused by Weathering—The Shuilien Conglomerate Slope,” 17th Southeast Asian Geotechnical Conference, May 10~13, 2010 Taiwan, Taipei


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top