跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聖文
研究生(外文):Sheng-Wen Chen
論文名稱:製備三維金奈米結構以探討聚吡咯分子狹縫對表面增強拉曼散射熱點之研究
論文名稱(外文):An investigation of SERS hot spots at polypyrrole embedded gap between the gold nanostructure and Au substrate
指導教授:張裕煦
口試委員:鍾仁傑黃志豪張世慧
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:沾筆式奈米微影術奈米金屬陣列表面增強拉曼散射
外文關鍵詞:Dip-Pen NanolithographyGold Nanostructure ArraysSurface-enhanced Raman Scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究為在金基材上,以電化學聚合成長聚吡咯,藉由控制沉積電量合成不
同厚度的聚吡咯分子層,並在上方吸附金奈米顆粒、沉積金薄膜或金點陣以形成
狹縫,成為垂直式 「奈米金顆粒/高分子/金薄膜」 、 「金薄膜/高分子/金薄膜」
及 「金點陣/高分子/金薄膜」 三明治結構。除貴金屬表面電漿會造成 SERS 外,
當貴金屬間存在一奈米尺寸狹縫時,也會產生電漿耦合作用,其耦合帶會造成局
部電磁場的增強,進而影響 SERS 的強度。根據本實驗的結果,發現當狹縫為
2.11 nm 時,表面增強拉曼散射的強度最強。並在 「金薄膜/高分子/金薄膜」與
「金點陣/高分子/金薄膜」 的實驗中發現,第二層金奈米結構的厚度為 10 nm 時,
SERS 耦合的效果最佳。最後由 FDTD 計算模擬實驗,證實電磁場在耦合帶的
增強與狹縫間距有關,並得到與實驗相同的趨勢。

The objective of this research is to conduct a systematic analysis of hot spots
formed in between a gold nanoparticles (AuNPs) thin film and gold substrate by using
surface-enhanced Raman scattering. Fabrication of self-assembled AuNPs thin film
on modified surface of glass substrate was investigated. We will see later that hotspots
is also frequently used to describe the place where SERS happens.
Polypyrrole, a Raman active polymer, acting as a spacer was first synthesized via
electrochemical deposition and then embedded between two layers to form vertical
“AuNP/polymer/Au substrate” sandwich structure. We have also successfully
fabricated “Au film/polymer/Au substrate” and “Au array/polymer/Au substrate”
sandwich structure .We got the same trend of results. Research work from several
groups in this field was introduced. There are lots of other applications for SERS in
the bioscience, which is beyond the scope of other paper. In the last part of the
paper, the topic of doing SERS on the flat surface was discussed. This is not only of
intellectual fun, but may also give us great advantages to develop new techniques.
The coupling interaction in dipole is studied while changing the thickness of the
spacer. The degree of the field enhancement is greatly dependent upon the dimension
of the gap. No matter what the substrate we experiment, the highest enhancement can
be reached when the thickness of the spacer is 2 nm.

中文摘要 ........................................................................................................................ i
英文摘要 ....................................................................................................................... ii
誌謝 ............................................................................................................................. iii
目錄 .............................................................................................................................. iv
表目錄 ......................................................................................................................... vii
圖目錄 ....................................................................................................................... viii
第一章 緒論 ............................................................................................................... 1
1.1 前言 ............................................................................................................ 1
1.2 研究動機與目的 ....................................................................................... 2
第二章 文獻回顧 ...................................................................................................... 3
2.1 表面增強拉曼散射 (SERS) 之簡介 ........................................................ 3
2.1.1 發展.............................................................................................. 3
2.1.2 原理.............................................................................................. 3
2.1.3 電磁效應...................................................................................... 6
2.1.3.1 文獻回顧....................................................................... 6
2.1.4 化學效應...................................................................................... 7
2.1.5 文獻回顧...................................................................................... 8
2.2 沾筆式奈米微影 (Dip-Pen Nanolithography;DPN) 的介紹 ................ 9
2.2.1 原理.............................................................................................. 9
2.2.2 相關文獻及應用........................................................................ 10
2.3 貴金屬奈米材料的介紹........................................................................... 11
2.3.1 發展............................................................................................ 12
2.3.2 金奈米粒子製作........................................................................ 13
2.4 導電高分子聚吡咯 polypyrrole (PPy) 的介紹 ...................................... 14
v
2.4.1 導電高分子簡介........................................................................ 14
2.4.2 導電高分子的導電機制............................................................ 14
2.4.3 PPy 之簡介 ................................................................................ 15
2.4.4 PPy 之聚合機制 ........................................................................ 15
2.5 有限時域差分法 Finite Difference Time Domain algorithm (FDTD) 的
簡介.........................................................................................................16
第三章 實驗 ............................................................................................................. 18
3.1 實驗藥品與材料 ..................................................................................... 18
3.2 實驗儀器與設定 ..................................................................................... 18
3.2.1 清洗儀器.................................................................................... 19
3.2.2 製程儀器.................................................................................... 19
3.2.3 分析儀器.................................................................................... 21
3.3 實驗流程 .................................................................................................. 23
3.3.1 「奈米金顆粒/高分子/金薄膜」之合成................................ 23
3.3.2 「金薄膜/高分子/金薄膜」之合成........................................ 24
3.3.3 「金點陣/高分子/金薄膜」之合成........................................ 25
3.4 實驗步驟 .................................................................................................. 26
3.4.1 金基材之製備............................................................................ 26
3.4.2 PPy 在金基材上之製備 ............................................................ 27
3.4.3 金奈米顆粒之製備.................................................................... 27
3.4.4 分子圖形化及金點陣之製備.................................................... 28
第四章 結果與討論 ................................................................................................ 29
4.1 利用電化學沉積法沉積導電高分子 PPy .............................................. 29
4.2 「奈米金顆粒/高分子/金薄膜」之分析 ................................................ 32
4.2.1 結構分析.................................................................................... 32
4.2.2 SERS 分析 ................................................................................. 34
vi
4.2.3 模擬分析.................................................................................... 39
4.3 「金薄膜/高分子/金薄膜」之分析 ........................................................ 42
4.3.1 結構分析.................................................................................... 42
4.3.2 SERS 分析 .................................................................................. 46
4.3.3 模擬分析.................................................................................... 52
4.4 「金點陣/高分子/金薄膜」之分析 ........................................................ 54
4.4.1 結構分析.................................................................................... 54
4.4.1.1 「金點陣/高分子/金薄膜」點陣膜厚 5 nm ............ 55
4.4.1.2 「金點陣/高分子/金薄膜」點陣膜厚 10 nm .......... 64
4.4.1.3 「金點陣/高分子/金薄膜」點陣膜厚 20 nm .......... 74
4.4.2 SERS 分析 .................................................................................. 83
4.4.3 模擬分析.................................................................................... 90
4.5 金薄膜厚度與 SERS 強度交叉分析 ..................................................... 92
第五章 結論 ............................................................................................................. 95
參考文獻.....................................................................................................................96

1. Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B
2000, 104, 564–570.
2. Demaille, C.; Brust, M.; Tsionsky, M.; Bard, A. J. Anal. Chem. 1997, 69,
2323–2328.
3. Peto, G.; Molnar, G. L.; Paszti, Z.; Geszti, O.; Beck, A.; Guczi, L. Mater. Sci.
Eng. C. 2002, 19, 95–99.
4. Chandrasekharan, N.; Kamat, P. V. J. Phys. Chem. B 2000, 104, 10851–10857.
5. Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8–24.
6. Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Adv. Mater. 1994, 6,
600-604.
7. Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen,Y.; Nikitin, K.; Palmer, R.
E.; Preece, J. A.; Evans, S. D.; Fitzmaurice, D. Langmuir 2004, 20, 3766-3768.
8. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661-663.
9. Garrell, R.L. Anal. Chem. 1989, 61,401A – 411A.
10. Weaver, M. J.; Zou, S.; Chan, H. Y. H. Anal. Chem. 2000, 72, 38A–47A.
11. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26,
163–166.
12. Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215-5217.
13. Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1-20.
14. Nie, S.; Emory, S. R. Science 1997, 275, 1102-1106.
15. Le Ru, E. C.; Etchegoin, P. G. J. Chem. Phys. 2009, 130, 181101-1–181101-4.
16. Li, Y.; Lu, G.; Wu, X.; Shi, G. J. Phys. Chem. B 2006, 110, 24585–24592.
17. Lee, S. J.; Guan, Z. Q.; Xu, H. X.; Moskovits, M. J. Phys. Chem. C 2007, 111,
97
17985–17988.
18. Sepulveda, B.; Angelome, P. C.; Lechuga, L. M.; Liz-Marzan, L. M. Nano
Today 2009, 4, 244–251.
19. Moskovits, M. J. Chem.Phys. 1978, 69, 4159–4161.
20. Creighton, J.A., Eadon, D.G. J. Chem. Soc. Faraday Trans. 1991, 87(24),
3881–3891.
21. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. J. Phys.
Chem. B 2005, 109, 11279−11285.
22. Lee, S. H.; Bantz, K. C.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L. Langmuir
2009, 25, 13685−13693.
23. Liu, G.; Li, Y.; Duan, G.; Wang, J.; Liang, C.; Cai, W. ACS Appl. Mater.
Interfaces 2012, 4, 1−5
24. Le Ru, E. C.; Etchegoin, P. G. J. Chem.Phys. 1986, 84, 4174–4180.
25. Bizzarri, A. R.; Cannistraro, S. Nanomed. Nanotechnol. Biol. Med. 2007, 3,
306–310.
26. Narayanan, R.; Lipert, R. J.; Porter, M. D. Anal. Chem. 2008, 80, 2265–2271.
27. Ryoo, H.; Kim, K.; Shin, K. S. Vib. Spectrosc. 2010, 53, 158–162.
28. Kim, K.; Ryoo, H.; Shin, K. S. Langmuir 2010, 26, 10827–10832.
29. Brosseau, C. L.; Rayner, K. S.; Casadio, F.; Grzywacz, C. M.; Van Duyne, R. P.
Anal. Chem. 2009, 81, 7443–7447.
30. Casadio, F.; Leona, M.; Lombardi, J. R.; Van Duyne, R. P. Acc. Chem. Res. 2010,
43, 782–791.
31. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661-663.
32. Zhang, H.; Mirkin, C. A.; Chem. Mater., 2004, 16, 1480-1484.
33. Zhang, H.; Chung, S. W.; Mirkin, C. A. Nano Lett., 2003, 3, 43-45.
34. Salaita, K. S.; Lee, S. W.;Giger, D. S.; Mirkin, C. A. Nano Lett., 2006, 6,
98
493-2498.
35. Lee, W. K.; Chen, S.; Chilkoti, A.; Zauscher S. Small, 2007, 3, 249-254.
36. Demers, L. M.; Mirkin, C.A. Angew. Chem. Int. Ed., 2001, 40, 3069-3071.
37. Leonhardt, U. Nature Photonics, 2007, 1, 207-208.
38. Frens, G. Nature (London), Phys. Sci. 1973, 241, 20–22.
39. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995,
67, 735–743.
40. Liu, Y. C.; Hwang, B. J. Synth. Met. 2000, 113, 203–207.
41. Liu, Y.-C. Langmuir 2003, 19, 6888–6893.
42. Liu, Y.-C. J. Phys. Chem. B 2004, 108, 2948–2952.
43. Shirakawa, H.; Louis, E. J.;Macdiarmid, A. G.; Chiang, C. K.; Heeger A. J. J. C.
S. Chem. Comm. 1977, 578-580.
44. Lefrant, S.; Lichtmann, L. S.; Temkin, H.; Fitchen, D. B. Solid State Commun.
1979, 29, 191-196.
45. Schmeiber, D.; Bartl, A.; Dunsch, L.; Naarmann, H.; Gopel W. Synth. Met. 1998,
93, 43-58.
46. Wegner, G. Angew. Chem.Int. Ed. Engl.1981, 20, 361-381.
47. Yee K. S., IEEE Trans. Antennas Propagat. 1966, AP-14, 302-307.
48. Taflove, A.; Brodwin, M. E., IEEE Trans. Microwave Theory & Techniques 1975,
23, 623-630.
49. Taflove, A.; Brodwin, M. E., IEEE Trans. Microwave Theory & Techniques 1975,
23, 888-896.
50. 方嘉德譯,儀器分析 (下),台中市:滄海書局,92 年 4 月,729-764。
51. 方嘉德譯,儀器分析 (下),台中市:滄海書局,92 年 4 月,718-727。
52. Takakubo, M. Synth. Met. 1986, 16, 167–172.
53. Rapi, S.; Bocchi, V.; Gardini, G. P. Synth. Met. 1988, 24, 217–221.
99
54. Kontturi, K.; Pentti, P.; Sundholm, G. J. Electroanal. Chem. 1998, 453, 231–238.
55. Cheung, K. M.; Bloor, D.; Stevens, G. C. Polymer 1988, 29, 1709–1717.
56. Kinnan, M. K.; Chumanov, G.. J. Phys. Chem. C 2007, 111, 18010–18017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊