跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錦豪
研究生(外文):Chin-Hao Chen
論文名稱:用於永磁同步馬達之具類弦波定子電流的六步波電壓驅動技術
論文名稱(外文):A Six-Step Voltage Driving Method for a PMSM with Quasi-Sinusoidal Stator Currents
指導教授:黃明熙
口試委員:賴炎生林法正
口試日期:2012-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:類弦波定子電流六步波電壓驅動內置磁石永磁同步馬達電動載具輸出轉矩與輸入電流比例最大化
外文關鍵詞:Quasi-sinusoidal currentSix-step voltage controlInternal permanent magnet synchronous motorElectric vehiclemaximal torque per ampere
相關次數:
  • 被引用被引用:6
  • 點閱點閱:588
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般用於電動載具之馬達牽引系統,多希望具有高效率、高功率密度與寬廣之定功率輸出範圍,上述需求多與驅動裝置的輸出有效相電壓大小有關。傳統是以固定直流鏈電壓再以過調變方式來提高輸出電壓之有效利用率,但該方法所衍生之電流諧波可能導致輸出轉矩漣波增加。本論文提出一新型六步波電壓驅動方法,以調整直流鏈電壓大小與六步波電壓超前相反電動勢角度之雙自由度方法,可同時提高電壓有效利用率、降低永磁同步馬達之電流諧波與其驅動器之PWM切換損失;直流鏈電壓是依據馬達無載反電動勢,由一雙向直流-直流轉換器進行調控,如此可提高速度操作範圍及達到輸出轉矩與輸入電流比例最大化之控制。另外,以調整超前相反電動勢角度使輸入馬達定子電流接近弦波來降低馬達因六步波電壓驅動所造成之電流諧波。
所提之方法先以MATLAB建構模擬環境發展控制策略,隨後以Renesas SH7137微處理器作為控制核心之驅動器,於6kW/47Nm/1200rpm之內置磁石永磁同步馬達驗證所提六步波電壓驅動方法之有效性。


High efficiency, high power density and wide constant power region are all the required functions of the traction motor and drive in electric vehicle applications. However, these requirements are mainly dependent on the output phase voltage utilization of the motor drives. An over modulation method with fixed dc-link voltage was traditionally proposed to increase the output phase voltages. But this method may yield current harmonics to increase torque ripples. In this thesis, a novel six-step voltage control method is proposed to increase phase voltage utilization and reduce both current harmonics of PMSM and switching loss of its motor drive simultaneously. The proposed method provides two-degree-of-freedom control by adjusting both DC-link voltage and phase angle between applied six-step voltage and back EMF of PMSM. The DC-link voltage is regulated by a bi-directional dc-dc converter according to the no-load back EMF under different speed. Hence one can increase the speed operating range and yield generated torque under MTPA. Moreover, in order to reduce the current harmonics caused by the six-step voltage, the phase angle of applied six-step voltage is adjusted to lead the no-load back EMF to get a nearly sinusoidal stator current.
A MATLAB-based simulation environment of the motor drive system is established for developing the proposed control method first. Then, a MCU SH7137-based motor drive is employed to realize the control algorithms. Finally, some experimental results tested on a 6kW/47Nm IPMSM are carried out to verify the effectiveness of the proposed system.


摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究近況與目的 2
1.2.1 電動車輛用之馬達 3
1.2.2 電動車輛用驅動器之研發近況 4
1.2.3 研究目的 7
1.3 研究方法 8
1.4 論文大綱 9
第二章 永磁同步馬達驅動器之原理與分析 10
2.1 前言 10
2.2 IPMSM主導方程式 10
2.2.1 理想線性模型 10
2.2.2 輸出轉矩與輸入電流比例最大化 12
2.2.3 輸出轉矩與直流鏈電壓、相電壓命令相位之關係 13
2.3 永磁同步馬達之驅動方式 16
2.3.1 180 六步波電壓驅動 16
2.3.2 正弦波驅動方式 18
2.4 具類弦波定子電流 23
2.3.1 直流鏈電壓與定子電流諧波關係 23
2.3.2 基頻定子電流分析 26
2.5 六步波電壓驅動下之最大轉矩輸出 28
第三章 具動態升壓之雙向直流-直流轉換器設計 32
3.1 前言 32
3.2 雙向直流-直流轉換器設計之原理分析 32
3.3 雙向直流-直流轉換器之硬體電路設計 35
3.3.1 電感、電容、二極體以及功率晶體開關之選配 35
3.4 升壓模式之軟體設計 37
3.4.1 軟體架構 37
3.4.2 軟體流程之規劃 38
3.5 升壓模式下之頻率響應分析與設計 42
3.5.1 電路小訊號分析 42
3.5.2 控制器設計 45
3.6 動態升壓轉換器實驗結果 48
3.6.1 頻率響應 49
3.6.2 時域響應 52
第四章 永磁同步馬達驅動系統平台建構與實現 55
4.1 前言 55
4.2 系統規格 55
4.3 系統硬體規劃與設計 56
4.4 系統軟體規劃與設計 56
4.4.1 軟體架構 56
4.4.2 轉子位置回授及速度估測運作 59
4.4.3 比例積分控制器之設計 61
第五章 實驗結果與討論 64
5.1 前言 64
5.2 實驗系統設置 64
5.3 實驗結果及數據分析 66
第六章 結論與未來展望 82
6.1 結論 82
6.2 未來研究方向 82
參考文獻 84
符號彙編 87
作者簡歷 91


[1]K. Eino, “The views and policies on Japan’s automobile industry,” Feb. 2010. [Online] Available: http://www.jari.or.jp/
[2]M. A. Kromer and J. B. Heywood, “Electric powertrains: opportunities and challenges in the u.s. light-duty vehicle fleet,” May. 2007.
[Online]Available:http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/kromer_electric_powertrains.pdf
[3]Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 746-765,Apr. 2007.
[4]張智凱,「具低解析度轉子磁場位置回授之永磁同步馬達驅動器研製」,國立臺北科技大學電機工程系碩士學位論文,民國九十九年。
[5]K.T. Chau, C.C. Chan, and C.H Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 2246-2257, Jun. 2008.
[6]辜重興「具有弱磁控制之電動載具用永磁同步馬達驅動器研製」,國立臺北科技大學電機工程系碩士學位論文,民國九十九年。
[7]T.M. Jahns, “Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. IA-23, no. 4, pp. 681-689, Jul. 1987.
[8]S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[9]J. H. Liaw, Y. H. Liao, C.W. Tung, S.M. Sue, and Y. S. Huang, “A robust field-weakening control strategy for IPMSM drives,” in Proc. IPEC, pp. 605-611, 2010.
[10]B. H. Bae, N. Patel, S. Schulz, and S.K. Sul, “New field weakening technique for high saliency interior permanent magnet motor,” in Proc. IAS. 38th, vol.2, pp. 898-905, 2003.
[11]J. S. Park, S. M. Jung, H. W. Kim, and M. J. Youn, “Current control of PMSM in over modulation region,” in Proc. ICPE. 7th, pp. 1062-1065, Oct. 2007
[12]K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An over modulation method for pwm-inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395-3404,Oct. 2010.
[13]S. Lerdudomsak, S. Doki, and S. Okuma, “Analysis for unstable problem of PMSM current control system in over modulation range,” in Proc. IEEE. IAS, pp. 1-8, 2008.
[14]T. S. Kwon, G. Y. Choi, M. S. Kwak, and S. K. Sul, “Novel flux-weakening control of an IPMSM for quasi-six-step operation,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1722-1731, Nov/Dec. 2008.
[15]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma, "Development and testing of the torque control for the permanent-magnet synchronous motor," IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 800-806, Jun. 2005.
[16]H. Nakai, H. Ohtani, E. Satoh, and Y. Inaguma,”Novel torque control technique for high effciecy/high power interior permanent magnet synchronous motors” Review of Toyota CDRL Vol. 40 No. 2, 2005.
[17]F.D. Kieferndorf, M. Forster, and T.A. Lipo, "Reduction of DC-Bus capacitor ripple current with PAM/PWM converter," IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, Mar/Apr. 2003.
[18]T. Senjyu, Y. Noguchi, N. Urasaki, A. Yona, H. Sekine, and T. Funabashi, "Wide-speed-range optimal PAM control for permanent magnet synchronous motors," in Proc. ICPE. 7th , pp. 916-921, 2007.
[19]K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura, and S. Sasaki, "High performance motor drive technologies for hybrid vehicles," in Proc. PCC, pp. 1584-1589, Oct. 2007.
[20]劉昌煥著,「交流電機控制」,台北市: 全華,民國91年,第103~130頁。
[21]孫清華譯,「最新直流無刷馬達」,台北市: 全華,民國91年,第2-24~2-25頁。
[22]楊勝明,「永磁同步馬達課程講義」,民國一百年,Lecture 4 DC/AC Inverter。
[23]梁適安,交換式電源供給器之理論與實務設計(修訂版),台北:全華科技圖書股份有限公司,2008,第12-68頁。
[24]詹文豪「具有動態升壓之輕型電動載具用永磁同步馬達驅動器研製」,國立臺北科技大學電機工程系碩士學位論文,民國九十七年。
[25]R. W.Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
[26]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, New York: John Wiley & Sons, 2003, pp. 173.
[27]P. C. Todd, UC3854 Controlled Power Factor Correction Circuit Design Application Note, USA: Texas Instruments Incorporated, 1999.
[28]B. C. Kuo and F. Golnaraghi 著;王振興等 譯,自動控制系統,台北市:台灣東華,民93,第482頁。


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top