跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳自立
研究生(外文):Tzu-Li Chen
論文名稱:應用PSS/E於台灣併接大型離岸風場之相關研究
論文名稱(外文):Research on the integration of large-scale offshore wind farm in Taiwan by using PSS/E
指導教授:周至如李清吟李清吟引用關係
指導教授(外文):Chih-Ju ChouChing-Yin Lee
口試委員:吳元康曹大鵬
口試委員(外文):Yuan-Kang WuTa-Peng Tsao
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:離岸風場高占比風力低電壓持續運轉能力高壓直流傳輸系統穩態模擬暫態模擬
外文關鍵詞:Offshore Wind FarmHigh PenetrationLow Voltage Ride Through (LVRT)High Voltage Direct Current (HVDC)Steady-State SimulationTransient Simulation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:2
台電公司正積極發展再生能源,其中風力發電為開發重點之一。但礙於陸上適合建置風場的區域越來越少,未來趨勢將朝向離岸風場發展,且隨著風場裝置容量增加,併入電網的影響亦逐漸增加。因此,風場與系統間之衝擊已成為規劃大型風場前的重要課題。
本論文使用PSS/E作為分析軟體工具,以2015年台澎海底電纜鋪設完成後之台電離峰系統做為研究標的,並以雙饋式感應發電機(容量3.6MW)為研究的風力機型。本論文第一部分以台電公司風力發電規劃藍圖,於彰濱、雲林沿岸及澎湖外海建置大型離岸風場,並規劃台灣高占比風力系統,預計以全台灣風力總裝置容量為2733MW,約占離峰負載量12%,進行各種穩態潮流與暫態案例分析,其中包括電力潮流、短路電流、系統故障使風場切離之臨界範圍、暫態穩定度指標-故障臨界清除時間、傳輸纜線距離對於風場之影響與制定風機低電壓持續運轉能力曲線等對系統之間衝擊,以保障系統供電可靠度;第二部分主要探討一大型離岸風場併接點之選擇,以台灣西部沿岸之特高壓匯流排為風場併接點選擇,其中假設離岸風場之裝置容量為864MW,探討系統短路電流、短路容量、短路比(SCR)、風場併入後之電壓變動、風速擾動、風速驟升及驟降等衝擊分析;第三部分主要探討大型離岸風場應用高壓直流傳輸纜線之響應,其中假設離岸風場之裝置容量為403.2MW,探討風速擾動、系統電網端發生短路事故及離岸風場端短路事故之衝擊分析,並比較高壓直流傳輸與高壓交流傳輸兩者之間的響應差異。
由模擬結果顯示,當高占比風力併入系統後,不一定會降低電力系統之暫態穩定度,其亦有改善的效果。但是對於大量風力輸入,必須先行解決舒緩電力潮流之部分;而大型離岸之併入,須慎選風場之引接點,以避免風場併入系統後之電壓變動過高。最後,離岸風場與電網間應用HVDC傳輸系統,可有利於隔絕系統之擾動,但是,採用此系統需考慮功率損耗問題。


Taiwan Power Company (TPC) is developing the renewable energy actively, in which the wind energy is seen as one of important resources. However, the suitable locations for wind farm constructions are less and less on the shore, and the trend of wind farm development in the future will toward to offshore where the installation capacity of the wind farm could reach hundreds of megawatts. As the increase of installation capacity of the wind farm, the effects on the interconnected AC grid are also more notable. Thus, the impact study between an offshore wind farm and the AC grid has been become an important issue before a large-scale offshore wind farm construction.
In these, the off-peak system of Taiwan in 2015 is used as a studied system in which the Penghu area and Taiwan grid is connected by submarine cables. The type of wind turbine is doubly fed induction generator (DFIG) with single installation capacity of 3.6MW. The simulation studies are divided into three parts: in the first part, according to the blueprint of wind power generation scheme in Taiwan, three large-scale offshore wind farms are assumed at Changbin and Yunlin coast as well as Penghu offshore. The total installation capacity is 2,733MW and approximates 12% of off-peak load demand. Then, based on this system with high penetration of wind power, the simulation with respect to steady state and transient state, including power flow, short circuit current, critical fault point of wind farm tripping, critical clearing time of fault, the effect of transmission distance on wind farm operation and the establishment of the continuous low voltage operation curve of wind turbine, are to be analyzed. The impacts on system stability are surveyed to insure the reliability of power supply. The choice of interconnection point of the large-scale offshore wind farm is investigated in second part of the simulation study, in which the installation capacity of the offshore wind farm is assumed 864MW. The interconnection point is on the extra-high voltage bus in the west coast of Taiwan. The short circuit current, short circuit capacity and short circuit ratio (SCR) will be studied. Besides, the impact of voltage disturbance and wind speed variation (drop and rise) after the wind farm interconnected operation are also analyzed. In the third part, the responses of a large-scale offshore wind farm interconnected by high voltage direct current (HVDC) link are presented; in this case, the installation capacity of the wind farm is assumed 403.2MW. The impact study of wind speed variation and the faults occurrence on the shore and offshore respectively are studied; furthermore, the comparisons of HVDC link and AC link responses are investigated. All of the simulation studies are performed by package software of PSS/E.
From the simulation results, it shows that as high penetration of wind power interconnected with the AC grid, the transient stability of the AC grid may not deteriorate; oppositely, it could improve the transient stability of the AC grid, and the power flow should be alleviated first. On the other hand, the interconnected point of the wind farm should be selected carefully in order to avoid the severe voltage variation after the wind farm interconnected operation. Finally, the HVDC link could isolate the disturbances those occurred in the AC grid or the offshore wind farm, and provide a good transient stability on both systems, but the power losses of HVDC link are another important concern.

摘 要-----i
ABSTRACT-----iii
誌謝-----vi
目錄-----vii
表目錄-----x
圖目錄-----xii
第一章 緒論-----1
1.1研究背景與動機-----1
1.2研究目的與方法-----6
1.3文獻回顧-----7
1.4論文架構-----13
第二章 台灣風力高占比之系統衝擊分析-----14
2.1前言-----14
2.2 台灣風力高占比系統介紹-----14
2.2.1台灣電力系統-----14
2.2.2 高占比風力系統規畫-----15
2.3台灣風力高占比之系統穩態分析-----16
2.3.1台灣風力高占比之電力潮流分析-----16
2.3.2台灣風力高占比之短路電流分析-----24
2.4台灣風力高占比之系統暫態分析-----26
2.4.1離岸風場之故障臨界清除範圍-----26
2.4.1.1 345kV系統匯流排故障之風場臨界切離範圍-----27
2.4.1.2 161kV系統匯流排故障之風場臨界切離範圍-----30
2.4.2台灣風力高占比之故障臨界清除時間-----34
2.4.2.1電力系統穩定度與故障臨界清除時間之定義-----35
2.4.2.2 台灣風力高占比系統故障臨界清除時間的影響-----36
2.4.3離岸風場傳輸纜線距離及低電壓持續運轉能力曲線設計-----42
2.4.3.1 離岸風場之傳輸纜線距離之差異-----42
2.4.3.2 風機低電壓持續運轉能力規範曲線設計-----45
2.5結果與討論-----49
第三章 大型離岸風場併接點選擇之探討-----51
3.1前言-----51
3.2系統介紹-----51
3.3離岸風場併接點之短路電流分析-----53
3.4離岸風場併入台灣電力系統之電壓變動探討-----56
3.5風速變化引起之電壓變動-----59
3.5.1離岸風場遭受風速擾動之併接點電壓變動分析-----61
3.5.2風速上升造成電壓變動分析-----66
3.5.3風速下降造成電壓變動分析-----71
3.6模擬結果與討論-----77
第四章 離岸風場應用不同傳輸系統下之相關模擬分析-----79
4.1前言-----79
4.2系統介紹-----79
4.3 高壓直流傳輸系統介紹-----81
4.4離岸風場應用HVAC與HVDC傳輸纜線之模擬分析-----86
4.4.1應用HVAC、HVDC、HVAC-HVDC混合傳輸之線路損耗比較-----86
4.4.2應用HVAC、HVDC、HVAC-HVDC混合傳輸之系統暫態模擬-----87
4.4.2.1 系統電網端發生三相短路事故模擬-----88
4.4.2.2 離岸風場端發生三相短路事故模擬-----90
4.5 針對HVAC傳輸纜線造成系統電壓過高之問題改善分析-----94
4.6 模擬結果與討論-----99
第五章 結論與未來研究方向-----100
5.1結論-----100
5.2未來研究方向-----102
參考文獻-----103
附錄-----106
作者簡介-----108


[1]World Wind Energy Report 2012, World Wind Energy Association (WWEA)[Online]. Available:http://www.wwindea.org/home/index.php
[2]J. Kabouris and F. D. Kanellos,“ Impacts of Large-Scale Wind Penetration on Designing and Operation of Electric Power Systems,” IEEE Transactions on Sustainable Energy, Vol. 1, No. 2, 2010, pp. 107-114.
[3]J. Clemens, S. Poul, N. Ian and R. Carsten,” Simulation of the impact of wind power on the transient fault behavior of the Nordic power system,” Electric Power Systems Research, Vol. 77, Iss. 2, 2007, pp. 135-144.
[4]C. Rahmann, H. J. Haubrich, A. Moser, R. Palma Behnke, L. Vargas and M. B. C. Salles,” Justified Fault-Ride-Through Requirements for Wind Turbines in Power Systems,” IEEE Transactions on Power Systems, Vol. 26, Iss. 3, 2011, pp. 1555-1563.
[5]I. D. Margaris, A. D. Hansen, P. Sorensen and N. D. Hatziargyriou," Dynamic security issues in autonomous power systems with increasing wind power penetration," Electric Power Systems Research, Vol. 81, Iss. 4, 2011, pp. 880-887.
[6]A. Vladislav and K. Hans," Large penetration of wind and dispersed generation into Danish power grid," Electric Power Systems Research, Vol. 77, Iss. 9, 2007, pp. 1228-1238.
[7]L. Wen Tsan, W. Yuan Kang, L. Ching Yin and C. Chao Rong," Effect of Low-Voltage-Ride-Through Technologies on the First Taiwan Offshore Wind Farm Planning," IEEE Transactions on Sustainable Energy, Vol. 2, Iss. 1, 2011, pp. 78-86.
[8]S. M. Muyeen, R. Takahashi, T. Murata and J. Tamura," A Variable Speed Wind Turbine Control Strategy to Meet Wind Farm Grid Code Requirements," IEEE Transactions on Power Systems, Vol. 25, Iss. 1, 2010, pp. 331-340.
[9]M. Tsili and S. Papathanassiou," A review of grid code technical requirements for wind farms," IET Renewable Power Generation, Vol. 3, Iss. 3, 2009, pp. 308-332.
[10]C. Yanxu and L. Zifa," Effect of Large-Scale Wind Farm on Transient Stability," 2010 International Conference on Electrical and Control Engineering (ICECE), 2010, pp. 3680-3683.
[11]H. Hongjing, L. Li, W. Tao and M. Youzhong," Comparison of Transient Stability between Wind Farm Based on DFIG and Traditional Power Plant in an Actual Grid ," 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010, pp. 1-4.
[12]J. Kabouris and F. D. Kanellos," Impacts of Large-Scale Wind Penetration on Designing and Operation of Electric Power Systems," IEEE Transactions on Sustainable Energy, Vol. 1, Iss. 2, 2010, pp. 107-114.
[13]F. M. Gatta, A. Geri, S. Lauria and M. Maccioni," Steady-state operating conditions of very long EHVAC cable lines," Electric Power Systems Research, Vol. 81, Iss. 7, 2011, pp. 1525-1533.
[14]W. L. Kling, R. L. Hendriks and J. H. Den Boon," Advanced transmission solutions for offshore wind farms," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-6.
[15]L. Risheng, S. Bozhko and G. Asher," Frequency Control Design for Offshore Wind Farm Grid With LCC-HVDC Link Connection," IEEE Transactions on Power Electronics, Vol. 23, Iss. 3, 2008, pp. 1085-1092.
[16]台灣電力公司,台灣電力股份有限公司輸電系統規劃準則,2008。
[17]蒲冠志、陳南鳴、劉志文、李清吟、王勝寬、陳清山、蔡土城、余森年、林水秀、廖清榮,「強化台灣電力系統穩定度研究」,台電工程月刊,第668期,第47-81頁,2004年4月。
[18]張忠良,「電力系統穩定器原理與運作」,台電工程月刊,第544期,第33-41頁,1993年12月。
[19]張忠良,「台電系統使用電力系統穩定器之經驗」,台電工程月刊,第546期,第33-39頁,1994年2月。
[20]張忠良,「台電電力系統穩定器運轉測試分析」,台電工程月刊,第539期,第29-45頁,1993年7月。
[21]莊裕發,「台電系統加速型電力系統穩定器參數之檢討」,台電工程月刊,第690期,第30-46頁,2006年2月。
[22]范傳樑,「電力系統暫態穩定度預防控制」,義守大學電機工程研究所,碩士論文,2010年6月。
[23]張偉能、林明民、江榮城,「風力發電之系統暫態穩定度衝擊模擬」,台電工程月刊,629期,第32-44頁,2006年4月。
[24]莊裕發,「由東京電力公司強化電力系統穩定度已減少事故影響來探討台電系統之改善方式」,台電工程月刊,第682期,第89-97頁,2005年6月。
[25]M. Tsili and S. Papathanassiou, “A Review of Grid Code Technical Requirements for Wind Farms,” IET Renewable Power Generation, Vol. 3, no. 3, 2009, pp. 308-332.
[26]Thomas Ackermann, Wind Power in Power Systems, John Wiley and Sons Ltd, January, 2005.
[27]吳元康、李清吟、徐景何、陳自立、趙皇佑,「風力發電低電壓穿越特性對台灣離岸風場併接系統的影響研究」,台電工程月刊,第737期,2010,第61-72頁。
[28]F. Schettler H. Huang and N. Christl,” HVDC Transmission Systems using Voltage Sourced Converters - Design and Applications,” IEEE Power Engineering Society Summer Meeting, Vol. 2, Issue. 2000, 2000, pp. 715-720.
[29]Ackermann and Thomas ,“ Transmission Systems for Offshore Wind Farms,” IEEE Power Engineering Review, Vol. 22, Issue. 12, 2002, pp. 23-27.
[30]PTI,” Online Documentation PSS/E-29,” 2002.
[31]台灣電力公司,台灣電力股份有限公司輸電系統規劃準則,2009。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top