跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政廷
研究生(外文):Cheng-Ting Chen
論文名稱:科學園區超高壓變電所雷擊及開關突波特性及其影響研究
論文名稱(外文):Lightning and Switching Surges Characteristics and Affection Assessment of Extra-High Voltage Substation in the Science Park
指導教授:周至如
口試委員:黃聰亮何金滿劉志文
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:189
中文關鍵詞:科學園區超高壓變電所雷擊開關突波地電位昇
外文關鍵詞:science parkextra-high-voltage (EHV) substationpotential risklightningswitching surgeground potential rise (GPR)
相關次數:
  • 被引用被引用:16
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台電公司持續在各科學園區內興建超高壓變電所(E/S),做為園區的總電源變電所,供電給園區內各變電所及用戶,並供電給鄰近地區。由超高壓變電所直接供電給用戶,其雷擊突波及開關突波較易轉移至其下游用戶,造成較嚴重的衝擊,導致對電氣系統與設備的絕緣傷害,甚至威脅人員的安全。本研究針對設置於科學園區內、外之超高壓變電所探討其對用戶的突波傷害議題,將針對前者直接供電給用戶及後者供電配電變電所(D/S)再供電給用戶之突波電壓及電流將加以此分析及比較,其中包括雷擊突波及開關突波之轉移至用戶之強度分析,藉由分析結果進一步探討突波對電器系統及設備絕緣及人員安全的潛在威脅,首先應用電磁暫態分析程式(EMTP之改良程式ATP)建立電路ATP模型,模擬各位置遭受雷擊及開關操作產生之突波,觀察用戶端突波電壓及電流的變化及最大突波值。藉由ATP模型分析所得用戶端地網之注入電流,再應用接地系統分析軟體(CDEGS)來模擬地網電磁暫態及穩態特性包括地電位昇(GPR)、地表電位、接觸電壓、步間電壓、導體電流及地表電磁場之分佈狀況,藉由上述分析結果,最後將評估可能發生之風險包括人員與設備所受的影響。

The extra-high-voltage (EHV) substation(E/S) is erected continuously in each science park by Taiwan Power Company (TPC) for supplying power to substations and customers in the science park and nearby area. The lightning surges and switching surges of E/S are easily transferred to the downstream customers which are directly supplied by E/S. Thus, the impacts due to transferred surges will be more serious than that of other customers. The impacts will lead to damages on the insulation of distribution system and equipment and even threaten the safety of personnel. In thesis, the issue of surge damages of, the E/S in the science park and the E/S in the outside area of science Park (outside E/S) are studied. For both cases of customers directly supplied by E/S in the science park and indirectly supplied by outside E/S through distribution substation, the surge voltage and current are analyzed and compared, which include the analysis of lighting surges and switching surges transferred to the customers. Firstly, the circuit model of the system is constructed by the alternative transient program(ATP) of electromagnetic transient program(EMTP). Then, the surges at different locations due to lightning and switch operations are simulated and the characteristics of surge voltages and currents at customers are analyzed by ATP simulation. Based on the simulation results, the fault currents injected into grounding system at fault points are obtained. Finally, a software package for grounding system analysis, namely current distribution electromagnetic ground and soil structure analysis (CDEGS), is used to analyze the electromagnetic characteristics of ground grids of customer substations with respect to transient and steady states, which include the distribution of ground potential rise (GPR), potential on the ground surface, touch voltage, step voltage, conductor current and electromagnetic field (EMF) on the ground surface. According to the above analysis results, the risks of various surges are evaluated including the affections of lightning surges and switching surges on personnel, equipment and system.

摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
表目錄 VIII
圖目錄 XI
第一章 緒論 1
1.1 研究背景與目的 1
1.2 相關文獻研究概況回顧 2
1.3 研究內容概述 2
第二章 系統架構及問題描述 5
2.1 超高壓變電所系統架構介紹 5
2.2 接地系統架構 8
2.3 雷擊突波問題描述 9
2.3.1 雷突波特性 10
2.4 開關突波問題描述 14
第三章 模型建立及參數設定 15
3.1 研究方法及流程簡介 15
3.2 供電系統模型之建立及參數設定 16
3.2.1 電磁暫態分析程式(ATP)介紹 16
3.2.2 345kV電源模型與參數設定[37] 18
3.2.3 主變壓器及匯流排模型與其參數設定[37] 20
3.2.4 345kV架空輸電線模型與其參數設定[37] 22
3.2.5 161kV系統模型及參數設定[37] 25
3.2.6 161kV地下電纜與其參數設定[37] 27
3.2.7 配電變壓器及線路避雷器模型與參數設定[37] 35
3.2.8 高壓電纜及高壓用戶負載模型與參數設定[37] 37
3.2.9 雷突波電流模型建立 39
3.2.10 供電系統模型之完整建立 40
3.3 接地系統模型建立及參數設定 43
3.3.1 接地系統電磁分析軟體(CDEGS)介紹 43
3.3.2 接地系統電磁分析模型之建立及參數設定 49
第四章 科學園區超高壓變電所雷擊突波分析 51
4.1 前言 51
4.2 雷突波案例分析條件說明 51
4.3 E/S設置於科學園區內雷擊突波分析 52
4.3.1 E/S於園區內主變壓器一次側雷突波分析 53
4.3.2 E/S於園區內345kV電源架空輸電線路雷突波分析 57
4.3.3 E/S於園區內161kV電源線路雷突波分析 61
4.3.4 E/S於園區內E/S地網雷突波分析 65
4.3.5 E/S於園區內雷突波案例檢討與比較 69
4.4 E/S設置於科學園區外(750m)雷突波分析 73
4.4.1 E/S於園區外750m處主變壓器一次側雷突波分析 74
4.4.2 E/S於園區外750m處345kV電源架空輸電線突波分析 76
4.4.3 E/S於園區外750m處161kV電源線路突波分析 78
4.4.4 E/S於園區外750m處E/S地網突波分析 80
4.4.5 E/S設置於科學園區外(750m)雷突波案例檢討與比較 82
4.5 E/S設置於科學園區外(1,500m)雷突波分析 84
4.5.1 E/S於園區外1,500m處主變壓器一次側雷突波分析 85
4.5.2 E/S於園區外1,500m處345kV架空輸電線雷突波分析 89
4.5.3 E/S於園區外1,500m處161kV電源線路突波分析 93
4.5.4 E/S於園區外1,500m處E/S地網雷突波分析 97
4.5.5 E/S設置於科學園區外1,500m雷突波檢討與比較 101
4.6 雷突波案例綜合分析結果討論 105
第五章 科學園區超高壓變電所開關突波分析 110
5.1 前言 110
5.2 開關操作條件及分析 110
5.2.1 E/S設置於科學園區內開關突波分析 111
5.2.2 E/S設置於園區內開關突波案例檢討與比較 122
5.2.3 E/S設置於科學園區外(750m)開關突波分析 125
5.2.4 E/S設置於園區外(750m)開關切離案例檢討與比較 136
5.2.5 E/S設置於科學園區外(1,500m)開關切離突波分析 139
5.2.6 E/S設置於園區外(1,500m)開關切離案例檢討與比較 150
5.2.7 開關突波案例綜合檢討與比較 153
第六章 接地系統電磁特性分析 162
6.1 前言 162
6.2 分析條件說明 162
6.3 特高壓及高壓用戶地網電磁特性分析 164
6.3.1 E/S設置於園區內雷擊E/S地網電磁暫態分析 164
6.3.2 E/S設置於園區內開關突波案例電磁暫態分析 169
6.4 雷突波與開關突波電磁暫態分析結果及討論 174
第七章 接地故障之風險評估 175
7.1 前言 175
7.2 人員安全評估 175
7.3 一般設備風險評估 179
7.4 敏感設備之風險評估 180
第八章 結論及未來展望 182
8.1 結論 182
8.2 未來研究方向 183
參考文獻 184



[1]蘇偉府,345kV 線路裝設線路避雷器必要性研究,台電工程月刊第743期,第36-52頁,民國99年。
[2]Y. Mastumoto, “Measurement of Lighting Surges on Test Transmission Line Equipped with Arresters Struck by Natural and Triggered Lighting Surge Analysis,” IEEE Trans, on Power Delivery, Vol. 11, No.2, April 1996.
[3]M. Ishii et al., “Multistory Transmission Tower Model for Lighting Surge Analysis,” IEEE Trans., PWRD-6. No.3, pp.1327-1335, 1991.
[4]F. de la Rosa, R. Valdivia, H. Perez, and J. Loza, “Discussion about the Inducing Effects of Lightning in an Experimental Power Distributing Line Mexico,” IEEE Trans. on Power Delivery, Vol.3,No.3, pp. 1080-1089, July 1988.
[5]P.P Barker, T. Short, A. R. Eybert-Berard,and J. P. Berlandis, “Induced Voltage Measurements on an Experimental Distribution Line During Nearby Rocket Triggered Lightning Flashes,” IEEE Trans, on Powere Delivery, Vol. 11, No.2 April 1996.
[6]Mousa, A. M., and Srivastava, K. D. , “Effect of Shielding by Trees on the Frequency of Lightning Strokes to Power Lines,” IEEE Transactions on Power Delivery, Vol3 pp. 724-732, April 1988.
[7]D.W. Shoup, “Sensors in the Real World, Protecting Geotechnical Sensors and Cable from Lightning Damage,” Slope Indicator Company, Seattle, Washington, USA, (undated)
[8]Brown, G. W. and Whitehead, E. R. , “Field and Analytical Studies of Transmission Line Shielding,” IEEE Transactions on Power Apparatus and Systems, Vol88 pp. 616-626,1969.
[9]Mousa, A. M., and Srivastava, K. D., “The Lightning Performance of Unshielded Steel-Structure Transmission Lines,” IEEE Transactions on Power Delivery, Vol.4 pp. 437-445, Jan 1989.

[10]IEEE Lightning and Insulator Subcommittee of Transmission and Distribution Committee, Task Force 15.09 on Nostandard Lightning Voltage Waves, “Review of Research on Nostandard Lightning Voltage Waves,” IEEE paper 94 WM 075-2 PWRD, Feb. 1994.
[11]IEEE Working Group on Estimating the Lightning Performance of Transmission Lines, “ A Simplified Method for Estimating Lightning,” IEEE Transactions of Power Apparatus and Systems, Vol. PAS-104, pp. 919-932,1985.
[12]Shih-Shong Yen, “Lightning Ground Flash Density in Taiwan”, ACED93, Oita, Japan , Nov 1993.
[13]洪德俊,架空輸電線路之防雷策略及其接地系統之雷擊特性研究,中原大學電機系碩士論文,民國93年6月。
[14]陳文恭、曾憲瑗,台灣地區閃電與雷擊之研究[II],行政院國家科學委員會,防災科技研究報告82-25號,1993。
[15]顏世雄,臺灣新舊雷暴日數統計IKL地圖比較,臺電工程月刊, 第510期,民國80年。
[16]周至如、黃世杰、劉志文、羅天賜、彭榮芳、鄭美俊、簡士恩、洪得峻,「消雷保護系統及避雷針應用於電力輸電線之防雷保護研究」,台灣電力股份有限公司委託研究計畫,民國九十二年五月。
[17]H. Motoyma, W. Janischewskyj, A. M. Hussein, R. Rusam, W. A. Chisholm, and J. –S. Chang, “Electromagnetic Field Radiation Model for Lightning Strokes to Tall Structures,” IEEE Trans. On Power Delivery, Vol. 11, No. 3, July 1996, pp. 1624-1632.
[18]M. Ishii, T. Kwamura, T. Kouno, E. Ohsaki, K. Shiokawa, K. Murotani, and T. Higuchi, “Multistory Transmission Tower Model for Lightning Surge Analysis,” IEEE Trans. on Power Delivery, Vol. 6, No.3, July 1991, pp.1327-1335.
[19]S. Yokoyma, K Miyake, and S Fuki, “Advanced Observations of Lightning Induced Voltage on Power Distribution Lines. II,” IEEE Trans, on Power Delivery, Vol. 4, No2, pp. 2196-2203m Apr.1989.
[20]洪祥育,多功能水庫發電及供電系統之雷擊及開關突波特性分析及其影響評估,碩士論文,國立臺北科技大學電機工程學系,台北,2010。
[21]卲子興,高科技工廠開關突波分析,碩士論文,國立清華大學電機工程學系,新竹,2007。
[22]鄒國彥,地下超高壓變電所接地系統開關突波特性及其影響研究,碩士論文,國立臺北科技大學電機工程學系,台北,2006。
[23]吳孟昌,大型高科技工廠接地系統雷擊語開關突波特性分析,碩士論文,私立中原大學電機研究所,中壢,2002。
[24]陳子立,超高壓變電所開關突波特性及其對接地系統之影響研究,碩士論文,私立中原大學電機研究所,中壢,2007。
[25]溫茂廷,特高壓地下環路接地系統開關突波特性研究,中原大學碩士論文,2006。
[26]Chow, Y.L.; Salama, and M.M.A. “A Simplified Method for Calculating the Substation Grounding Grid Resistance,” IEEE Transactions on Power Delivery, Volume 9, Issue 2, pp.736-742, April 1994.
[27]Hans. R. Seedher and J. K. Arora, “A Practical Approach for Computation of Grid Current,” IEEE Transactions on Power Delivery, Vol. 14, No.3, July 1999, pp.897-902.
[28]Jinxi Ma and Dawalibi, F.P.,“ Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities,” IEEE Transactions on Power Delivery, Volume 17, Issue 2, April 2002, pp.596-602.
[29]Lee, C.-H. and Chang, C.-N., “Comparison of 161/69 kV Grounding Grid Design Between Indoor-Type and Outdoor-Type Substations,” IEEE Transactions on Power Delivery 20 (2 II),2005, pp.1385-1393.
[30]彭士開、黃佳文,「訂定變電所接地電阻目標值」,台電工程月刊,第448期, 1985, 第25-34頁。
[31]Rong Zeng, Xuehai Gong, Jinliang He, Bo Zhang, and Yanqing Gao, “Lightning Impulse Performances of Grounding Grids for Substations Considering Soil Ionization,” IEEE Transactions on Power Delivery, Vol. 23, NO. 2, April 2008, pp.667-675.
[32]R. H. Kaufmann, "Important Functions by an Effective Equipment Grounding System," IEEE Trans. on Ind. Appl. Vol. IGA-6, No.6, Nov./Dec. 1970, pp.545-552.
[33]IEEE Working Group, “Background and Methodology for Analyzing Step and Touch Potential near Transmission Structures,“ IEEE Trans. on Power Apparatus and Systems, Vol. PWRD-1, N0.2, Apr. 1986, pp. 150-162.
[34]周至如、顏世雄、葉勝年,「接地網雙層網路模型及電位分佈之分析」,中華民國第七屆電力工程研討會,1986,第 99-112頁。
[35]IEEE Committee Report, “Safe Substation Grounding-PartII”, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, Oct. 1982, pp.4006-4023.
[36]ANSI/IEEE-Std.80-2000, “IEEE Guide for Safety in AC Substation Grounding”, the Substation Committee of IEEE Power Engineering Society, New York,2000.
[37]黃昱中,科學園區超高壓變電所接地故障特性及其影響研究,國立臺北科技大學碩士論文,民國一百年六月。
[38]劉志文,周至如,竹科環路供電之接地系統接地故障電磁暫態特性研究,台灣電力公司研究報告,2004。
[39]周至如,「161kV以上的室內立體式變電所接地系統規劃」,電機月刊,第146期2月號,2003,第186-201頁。
[40]梁興華,一次變電所之雷擊突波特性分析及其對設備之影響評估,國立臺北科技大學碩士學位論文,2011。

[41]J. Lewis, B.M. Pryor, C.J. Jones, I.lrwin, and L.C. Campbell, and A.Aked, “Disconnector Operations in Gas Insulated Substations-Over Voltage Studies and Tests Associated with a 420 kV Installation,” CIGREReport 33.09,1988.
[42]T.H. Lee, “The Effect of Current Chopping in Circuit Breakers on Networks and Transformers, Part I, Theoretical Considerations,” Trans. AIEE, Vol.79, 1960, pp.535-544.
[43]A.N. Greenwood, “The Effect of Current Chopping in Circuit Breakers on Networks and Transformers, Part Ⅱ, Experimental Techniques and Investigations,” Trans. AIEE, Vol.79, 1960, pp.545.
[44]Jaime Avila-Rosales, “Modeling of the Power Transformer for Electromagnetic Transient Studies inpower System”, PH.D Dissertation, University of Wisconsin-Madsion, 1980.
[45]G. Paillet and N. Dufour, “An Investigation of the Natural Frequencies and Surge Impedances of Transformer Windings,” CIGRE Report No.109, 1948.
[46]Smith, D. R., S.R. Swanson, and J.D. Bout, “Over Voltages with Remotely-Switched Cable Fed Grounded Wye-Wye Transformer,” IEEE Trans. Vol.PAS-75, Sept./Oct.1975, pp1843-1853.
[47]W. A. Chisholm and W. Janischewskyi, “Lightning Surge Response of Ground Electrodes,” IEEE Trans. On Power Del. Delivery, Vol.4, No.2, pp.1329-1337, Apr.1989.
[48]M. Ramamoorty, M.M. Babu Narayanan, S. Paramewaran, and D. Mukhedkar, “Transient Performance of Grounding Grid,” IEEE Trans. on Power Delivery, Vol.4, No.4, pp.2053-2059, Oct.1989.
[49]L. Grcev and F. Dawalibi, “An Electromagnetic Model for Transients in Grounding System,” IEEE Trans. on Power Delivery, Vol.5, No.4, pp.1773-1781, Nov.1990.

[50]A.M. Mousa, “Ground Switch Interrupting Duty and Total Ground Current Imposed by Induction from Parallel Transmission Lines,” IEEE Trans. Vol.PAS-100, No.8, pp.3839-3849, Aug.1981.
[51]台電公司,臺灣電力股份有限公司輸電系統規劃準則,2005
[52]台電公司,數位式保護電驛應用方式說明,2009
[53]鍾慶茂,161kV 交連PE地下電纜老化問題之研究,碩士論文,國立臺灣大學電機工程學系,台北,2005。
[54]顏世雄,接地工程講義,台北,全華科技圖書公司,2004,第21-27頁。
[55]顏世雄,避電工程講義,台北,全華科技圖書公司,2007。
[56]古家豪,廖國忠,楊成發,顏世雄,吳啟瑞,李尚懿,蘇文源,胡鶯銘,「安全接地技術之探討與模擬」 勞工安全衛生研究季刊,第十卷第一期,第22-35 頁,2002。
[57]Laszlo Prikler, and Kristian Hoidalen “ATPDraw version 3.5 for Windows 9x/NT2000/XP, Users’ Manual,” October 2002.
[58]SES (Safe Engineering Service & Technologies Ltd.) Users’ Manual,2005.
[59]交連PE電力電纜,太平洋電線電纜股份有限公司,2012。
[60]電線電纜技術手冊,大亞電線電纜股份有限公司,2012。
[61]江炫樟譯,電力電子學,台北:全華科技股份有限公司,2006。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top