跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建隆
研究生(外文):Kian-Leong Lim
論文名稱:具觀測器之Fuzzy與PID適應性控制器
論文名稱(外文):Design of Observer-Based Fuzzy Adaptive Control and PID Adaptive Control for Nonlinear Systems
指導教授:姚立德姚立德引用關係
指導教授(外文):Leeh-Ter Yao
口試委員:蘇順豐莊季高李俊賢黃有評
口試委員(外文):Shun-Feng SuJih-Gau JuangJin-Shyan LeeYo-Ping Huang
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:134
中文關鍵詞:非線性適應性控制基因演算法模糊適應性控制PID適應性控制梯度投影演算法e-適應性演算法
外文關鍵詞:Lyapunov Direct Adaptive ControlObserver Based Adaptive Fuzzy ControlObserver Based Adaptive PID ControlObserver Based Output Feedback ControlMicro Genetic AlgorithmGradient Projection Algorithme-Modification Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這項研究旨在設計兩個不同類型具觀測器之非線性適應性控制器:(一)FUZZY適應性控制器 、(二)PID適應性控制器。該兩項設計將加強非線性適應性控制系統追蹤指定路徑的能力。該研究首先針對非線性系統設計可適應時變參數的模糊適應性控制器,藉由設計可篩選適當模糊控制輸出的基因演算法,使誤差與系統參數得以通過Lyapunov 穩定性分析。為了消除無法預測與避免的控制障礙,該研究也藉由設計監督控制器縮小模糊控制器的誤差範圍,強化模糊控制輸出穩定性使無法預期因素不影響系統穩定。另外也設計一個追加補償器來消減建模誤差和干擾影響。第二項研究採用PID適應性控制器,藉由該控制器維持系統誤差範圍Lyapunov 穩定。該設計採用梯度投影演算法調整PID參數使系統達到最佳控制狀態再由e-適應性演算法使誤差範圍趨近於零。

The aim of this research is to develop two different kinds of observer-based adaptive control scheme. The adaptive control scheme is designed for tracking the trajectory of a nonlinear system. In the first scheme, a fuzzy adaptive controller is designed to adapt its parameters to time-varying nature of the nonlinear system. The online adaptation of the fuzzy parameters is performed by Genetic Algorithm. Its fitness function is obtained through Lyapunov stability analysis. A supervisory controller is added to the fuzzy logic system to reduce the margin of error arising from uncertainties unaccounted for. A compensator is appended to compensate for modeling error and disturbance. In the second scheme, an adaptive PID controller has been designed using adaptation laws. Adaptation of PID parameters is via the gradient projection algorithm. A robust controller is added to compensate for modeling error and disturbance. Adaptation of the robust controller is through e-modification algorithm. Stability analyses and simulations are performed to show that all system states and control parameters are bounded and the tracking error is uniformly bounded near the origin.

TABLE OF CONTENT

摘 要 i
ABSTRACT ii
誌 謝 iv
Table of content v
List of Table vii
List of Figure viii
CHAPTER 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Thesis Organization 6
CHAPTER 2 Design of Primary Controller 7
2.1 Genetically Driven Fuzzy Adaptive Control 7
2.2 PID Adaptive Control with Adaptation Laws 13
CHAPTER 3 Problem Statement and Basic Assumption 22
3.1 Mathematical Model of Nonlinear System 22
3.2 Design of Observer Based Controller 24
3.3 Basic Definition and Assumption 26
CHAPTER 4 Lyapunov Stability Analysis of Fuzzy Adaptive Control 28
4.1 Design of Fuzzy Adaptive Controller 28
4.2 Design of Supervisory Controller 31
4.3 Design of Disturbance Controller 32
4.4 Simulation Results of Fuzzy Adaptive Control 33
4.4.1 Simulation of Duffing System using Fuzzy Adaptive Control 34
4.4.2 Simulation of Pendulum System using Fuzzy Adaptive Control 47
CHAPTER 5 Design of PID Adaptive Control 62
5.1 Lyapunov Stability Analysis of PID Adaptive Control 62
5.2 Uniform Ultimate Boundness of PID Adaptive Control 66
5.3 Simulation of PID Adaptive Control 68
5.3.1 Simulation of Duffing System using PID Adaptive Control 68
5.3.2 Simulation of Pendulum System using PID Adaptive Control 82
CHAPTER 6 Contribution of this research 97
6.1 Analysis of another Research 97
6.2 Simulation of Another Research 100
6.3 Analysis of Test Result of another Research 109
6.4 Improvement on another Research 111
6.5 Simulation of Research Improvement 114
6.6 Analysis of Research Improvement 123
CHAPTER 7 Conclusion 126
Reference 128



[1]P. V. Kokotovic, “The Joy of Feedback: Nonlinear and Adaptive,” Control Systems Magazine: IEEE, vol. 12, pp. 7-17, June 1992.

[2]ShanKar Sastry and Marc Bodson, Adaptive Control: Stability, Convergence, and Robustness. New Jersey: Prentice Hall, 1989.

[3]J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle River, NJ: Prentice-Hall, 1991.

[4]P.A. Ioannou and J. Sun, Robust Adaptive Control. New Jersey: Prentice Hall,1996.

[5]H. Butler, Model Reference Adaptive Control: From Theory to Practice. NJ: Prentice-Hall, 1992.

[6]Franklin, G. F., Powell, J. D., and Naeini, A. E., Feedback Control of Dynamic Systems. Singapore: Pearson Education Singapore, Pte. Ltd., 2006.

[7]R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive, and Robust. NJ: Prentice-Hall, 1995.

[8]H.K. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
[9]L.-X. Wang, A Course In Fuzzy Systems And Control. Englewood Cliffs, NJ: Prentice-Hall, 2005.

[10]L.-X. Wang and J. M. Mendel, “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares Learning,” IEEE Trans. Neural Networks, vol. 3, pp. 807-814, Sept. 1992.

[11]W.-Y. Wang, C. Y. Cheng, and Y. G. Leu, “An Online GA-Based Output-Feedback Direct Adaptive Fuzzy-Neural Controller for Uncertain Nonlinear Systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 1, pp. 334-344, Feb. 2004.

[12]L. X. Wang, “A supervisory controller for fuzzy control systems that guarantees stability,” IEEE Trans. Automat. Contr., vol. 39, pp. 1845–1847, Sept. 1994.

[13]T.-Y. Kuc and W.-G. Han, “An adaptive PID learning control of robot manipulators,” Automatica, vol. 36, pp. 717-725, May 2000.

[14]G. Tao, Adaptive Control Design and Analysis. New York: Wiley-Interscience, 2003.

[15]G. Feng and R. Lozano, Adaptive Control Systems, MA: Newnes, 1999.

[16]M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley-Interscience, 1995.

[17]P. A. Ioannou, A. Datta, “Robust Adaptive Control: A Unified Approach,” in Proc. Of the IEEE, vol. 79, pp. 1736-1768, Dec. 1991.

[18]J. Berry, Introduction to Non-Linear Systems. London: Arnold, 1996.

[19]I.D. Landau, System Identification and Control Design. NJ: Prentice-Hall, 1990.

[20]G. Tao and P.V. Kokotovic, Adaptive Control of Systems with Actuator and Sensor Nonlinearities. New York: Wiley-Interscience, 1996.

[21]L. Yao and P.-Z., “Huang Learning of Hybrid Fuzzy Controller for the Optical Data Storage Device,” IEEE Trans. On Mechatron., vol. 13, no. 1, pp. 3-13, Feb. 2008.

[22]Jyh-Shing Roger Jang and Chuen-Tsai Sun, “Neuro-Fuzzy Modeling and Control,” Proceeding of the IEEE, March 1995.

[23]Y.-G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B., vol. 29, no. 5, pp. 583-891, Oct.1999.

[24]W.-Y. Wang, M.-L. Chan, and T.T. Lee, and C.-H. Liu, “Adaptive Fuzzy Control for Strict-Feedback Canonical Nonlinear Systems with Tracking Performance,” IEEE Trans. Syst., Man, Cybern. B, vol. 30, pp. 878-885, Dec. 2000.
[25]Song-Shyong Chen, Jeng-Lang Wu, Shun-Feng Su, Juan-Chih Chang, Yuan-Chang Chang, and Tsu-Tian Lee, “On the Analysis of Direct Adaptive Fuzzy Controllers,” Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, pp. 4368-4373, August 2004.

[26]H. F. HO, Y. K. Wong, and A. B. Rad, “Direct Adaptive Fuzzy Control with State Observer for a Class of Nonlinear System,” IEEE Conf. Fuzzy Syst., pp. 1338-1343, May 2003.

[27]J.T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques.New York: Wiley-Interscience, 2002.

[28]H. J. Marquez, Nonlinear Control Systems: Analysis and Design. New York: Wiley-Interscience, 2003.

[29]J. L. Castro, “Fuzzy logical controllers are universal approximators,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 629–635, Apr. 1995.

[30]N. Golea, A. Golea, and K. Benmahammed, “Fuzzy Model Reference Adaptive Control.” IEEE Trans. Fuzzy Systems, vol. 10, pp. 436-444, Aug. 2002.

[31]P.-C. Chen, C.-F. Hsu, T.-T. Lee, and C.-H. Wang, “Fuzzy-identification-based adaptive backstepping control using a self-organizing fuzzy system,” Soft Computing, vol. 13, pp. 635-647, Feb. 2009.

[32]M. I. El-Hawwary, A. L. Elshafei, H. M. Emara, and H. A. A. Fattah, “Output feedback control of a class of nonlinear systems using direct adaptive fuzzy controller,” IEEE Trans. Contr. Theory and Appli. , vol. 151, no. 5, pp. 615-625, Sept.2004.

[33]Astrom, K.J. and Murray, R.M, Feedback Systems: An Introduction for Scientists and Engineers. New Jersey: Princeton University Press, 2008.

[34]Astrom, K. J., Borisson, U., LJung, L., and Wittenmark, B., “Theory and Applications of Self-Tuning Regulators.” Automatica, Vol. 13, pp. 457-476, 1977.

[35]Astrom, K. J. and Haggland, T., “The Future of PID Control.” Control Engineering Practice, Vol. 9, pp. 1163-1175, 2001.

[36]Astrom, K. J. and Wittenmark, B., Adaptive Control. Taipei: Pearson Education Taiwan Ltd., 2006.

[37]Hao Lin, Ma Changlin, and Li Feng, “Study of Adaptive PID Controller Based on Single Neuron and Genetic Optimization,” The Eight International Conference on Electronic Measurement and Instruments, ICEMI, 2007.

[38]Wael A. Farag, Victor H.Quintana, and Germano Lambert-Torres, “A Genetic-Based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems,” IEEE Transactions on Neural Networks, Vol. 9, No.5, September 1998.
[39]J. E. Mendoza, D. A. Morales, R. A. Lopez, E. A. Lopez, J. C. Vannier, and C. C. A. Coello, “Multiobjective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm,” IEEE Trans. Power Syst., vol. 22, no. 1, pp. 404-412, Feb. 2007.

[40]S. Chakravarty and R. Mittra, “Application of the Micro-Genetic Algorithm to the Design of Spatial filters with Frequency-Selective Surfaces Embedded in Dielectric Media," IEEE Trans. Antennas Propa.., vol. 44, no. 2, pp. 338-346, May 2002.

[41]L. Cen and Y. Lian, “A modified micro-genetic algorithm for the design of multiplierless digital FIR filters,” IEEE Conf. TENCON, vol. A, PP. 52-55, Nov. 2004.

[42]S. H. Zak, Systems and Control. New York: Oxford Univ. Press, 2003.

[43]G.C. Goodwin and D. Q. Mayne, “A Parameter Estimation Perspective of Continuous Time Model Reference Adaptive Control,” Automatica, vol. 23, no. 1, pp. 57-70,1987.

[44]Marios M. Polycarpou and Petros A. Ioannou, “Modelling, Identification and Stable Adaptive Control of Continuous-Time Nonlinear Dynamical Systems Using Neural Networks,” American Control Conference, pp. 36-40, June 1992.


[45]Marios M. and Petros A. Ioannou, “A Robust Adaptive Nonlinear Control Design,” in Proc. Of American Control Conference, San Fransisco, CA, June 1993, pp. 1365-1372, Jan. 2002.

[46]Jay A. Farrell and Marios M. Polycarpou, Adaptive Approximation Based Control. Hoboken, New Jersey: Wiley-Interscience, 2006.

[47]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Control. NJ: Prentice-Hall, 1989.

[48]L.-X. Wang, “Stable Adaptive Fuzzy Controllers with Application to Inverted Pendulum Tracking,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp. 677-691, Oct. 1996.

[49]Melsa, J. L. and Schultz, D. G., Linear Control System. Taipei: Central books publishing house,1969.

[50]P.A. Ioannou and B. Fidan, Adaptive Control Tutorial. Philadelphia: Siam, 20



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top