跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚宇桐
研究生(外文):Yeu-Torng Yau
論文名稱:KY轉換器拓樸之研究
論文名稱(外文):Research on KY Converter Topology
指導教授:胡國英
口試委員:李清然謝振中陳鴻祺莫清賢
口試日期:2012-06-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電機工程系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:112
中文關鍵詞:電荷泵耦合電感全數位控制高升壓轉換比以計數為基礎之比較器技術柔性切換KY轉換器KY升壓/降壓轉換器KY升壓轉換器具耦合電感之KY升壓轉換器電荷泵耦合電感全數位控制高升壓轉換比以計數為基礎之比較器技術柔性切換KY轉換器KY升壓/降壓轉換器KY升壓轉換器具耦合電感之KY升壓轉換器
外文關鍵詞:Charge pumpcoupling inductorfully digital controlhigh voltage conversion ratioone-comparator counter-based sampling techniquesoft switchingKY converterKY step-up/down converterKY boost converterinductor-coupled KY boost converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先提出一升壓轉換器架構,名為KY轉換器,此架構係結合切換式電荷泵的行為以及傳統降壓轉換器的行為來實現快速的負載響應,並同時具有低輸出電壓漣波的效果。除此之外,將柔性切換技術整合至所提之升壓轉換器,以獲得更高的電力轉換效率,並同時降低輸入湧浪電流。
另一方面,由於KY轉換器只能升壓,因此於本論文提出兩種降壓/升壓轉換器架構,名為KY升壓/降壓轉換器,以期能某種程度上來提升KY轉換器於工業上之應用能力。
更重要的是,由於KY轉換器之理想上的最高輸出電壓為兩倍的輸入電壓,因此於本論文提出幾種有/無耦合電感之衍生KY轉換器來達到高升壓轉換比,以提升所衍生之KY轉換器於不同工業場合之應用能力,例如:燒機測試、綠能、微網等。
最後,於本論文中,將詳細敘述每一個所提架構之基本操作原理及理論推導,並且搭配模擬與實作結果來驗證每一個所提架構之可行性及有效性。


In this dissertation, a boost converter, named KY converter, is first presented, which based on the combination of the charge pump behavior and traditional buck converter behavior, so as to provide not only the function of the fast load transient response but also the feature of the low output ripple current. Furthermore, the KY converter with the soft switching technique included suppresses the inrush current at startup as well as improves the power conversion efficiency.
On the other hand, since the KY converter is only a voltage-boosting converter, two types of voltage-bucking/boosting converters, named KY step-up/down converters, are proposed herein so as to improve the capability of the KY converter in industrial applications to some extent.
Above all, since the KY converter has an ideal voltage conversion ratio up to two only, several converters with high voltage conversion ratios, derived from the KY converter along with/without the coupling inductor, are presented herein so as to upgrade the capability of the KY converter in different industrial applications, such as burn-in test, green power, micro grid, etc.
Finally, a detailed description of the basic operating principles and mathematical deductions of the KY converter and its derivatives along with some simulated and experimental results is to be given in the following, so as to demonstrate the effectiveness and feasibility of the proposed converter topologies.

摘 要..................................................i
Abstract...............................................ii
List of Contents.......................................iv
List of Tables.........................................vi
List of Figures........................................vii
Chapter I Introduction..................................1
1.1 Motivations and Contributions.................1
1.2 Dissertation Organization.....................5
Chapter II KY Converter and Its Derivatives.....6
2.1 Proposed Converter Structure..................6
2.2 Basic Circuit Concept and Behavior............8
2.3 Operating Principles and Mathematical Analysis...8
2.3.1 Operating Principles of KY Converter..........9
2.3.2 Operating Principles of 1-plus-2D Converter...14
2.3.3 Operating Principles of 2-plus-D Converter....16
2.3.4 Effect of Diode on Voltage Ratio..............19
2.4 Control Method Applied........................20
2.5 Design Considerations....................... 21
2.5.1 Design of KY Converter........................22
2.5.2 Design of 1-plus-2D Converter.................23
2.5.3 Design of 2-plus-D Converter..................24
2.6 Simulated Results..................................24
2.7 Experimental Results..........................27
2.8 Discussion on the Proposed KY Converter and Its Derivatives.............................................33
Chapter III Soft Switching of KY Converter with Input Current Spike Suppressed..........................34
3.1 Overall System Configuration..................34
3.2 Basic Operating Principles and Mathematical Analysis................................................35
3.2.1 Basic Operating Principles....................35
3.3 Design Considerations.........................42
3.4 Simulated Results.............................44
3.5 Experimental Results..........................45
3.6 Discussion on the Proposed Soft Switching Method Applied to KY Converter.................................49
Chapter IV Two Types of KY Step-Up/Down Converters......50
4.1 Overall System Configuration..................50
4.2 Basic Operating Principles and Mathematical Analysis................................................51
4.2.1 Type-1 KY Step-Up/Down Converter..............52
4.2.2 Type-2 KY Step-Up/Down Converter..............58
4.2.3 Effect of Diode on Voltage Ratio..............59
4.3 Design Considerations and Simulated Results...60
4.4 Experimental Results..........................64
4.4.1 Experimental Results of Type-1 KY Step-Up/Down Converter...............................................64
4.4.2 Experimental Results of Type-2 KY Step-Up/Down Converter...............................................71
4.5 Discussion on the KY Step-Up/Down Converters...78
Chapter V A KY Boost Converter.........................79
5.1 Converter Structure............................79
5.2 Basic Operating Principles.....................80
5.3 Design Considerations and Simulated Results....85
5.4 Experimental Results...........................86
5.5 Discussion on the Proposed KY Boost Converter..90
Chapter VI Inductor-Coupled KY Boost Converter...........91
6.1 Overall System Configuration...................91
6.2 Basic Operating Principles.....................92
6.3 Design Considerations and Simulated Results....94
6.4 Experimental Results...........................96
6.5 Discussion on the Proposed KY Boost Converter ..............................................100
Chapter VII Conclusions and Future Work..........101
References..............................................103



[1]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001.
[2]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 2nd ed. New York: Wiley, 2003.
[3]A. M. Trynadlowski, Introduction to Modern Power Electronics, 1st ed. New York: Wiley, 1998.
[4]H. B. Shin, J. G. Park, S. K. Chung, H. W. Lee, and T. A. Lipo, “Generalized steady-state analysis of multiphase interleaved boost converter with coupled inductors,” IEE Proc. Electr. Power Appl., vol. 152, no. 3, pp. 584-594, May 2005
[5]R. Giral, E. Arango, J. Calvente, and L. Martinez-Salamero, “Inherent DCM operation of the asymmetrical interleaved dual buck-boost,” in Proc. IEEE IECON, 2002, vol. 1, pp. 129-134.
[6]F. L. Luo, “Positive output Luo converters voltage lift technique,” IEE Proc. Electr. Power Appl., vol. 146, no. 4, pp. 415-432, Jul. 1999.
[7]X. Chen, F. L. Luo, and H. Ye, “Modified positive output Luo converter,” in Proc. IEEE PEDS, 1999, vol. 1, pp. 450-455.
[8]F. L. Luo and H. Ye, “Negative output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1113-1121, Sep. 2003.
[9]F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan. 2003.
[10]F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594-602, Jun. 2004.
[11]M. Zhu and F. L. Luo, “Development of voltage lift technique on double output transformerless DC-DC converter,” in Proc. IEEE IECON, 2007, pp. 1983-1988.
[12] M. Zhu and L. Luo, “Implementing of developed voltage lift technique on SEPIC, Cuk and double-output DC-DC converters,” in Proc. IEEE ICIEA, 2007, pp. 674-681.
[13]H. Rodriguez, R. Ortega, and G. Escobar, “A new family of energy-based non-linear controllers for switched power converters,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 723-727.
[14]K. Viswanathan, D. Srinivasan, and R. Oruganti, “A universal fuzzy controller for a non-linear power electronic converter,” in Proc. FUZZ-IEEE, 2002, vol. 1, pp. 46-51.
[15]S.-H. Huh and G.-T. Park, “An adaptive fuzzy controller for power converters,” in Proc. FUZZ-IEEE, 1999, vol. 1, pp. 434-439.
[16]S.-C. Tan, Y. M. Lai, C. K. Tse, and C. K. Wu, “A pulse width modulation based integral sliding mode current controller for boost converters,” in Proc. IEEE PESC, 2006, pp. 1-7.
[17]Y. Jiao, F. L. Luo, and M. Zhu, “Voltage-lift-type switched-inductor cells for enhancing DC-DC boost ability: Principles and integrations in Luo converter,” IET Power Electron., vol. 4, no. 1, pp. 131-142, Jan. 2011.
[18]E. Vidal-Idiarte, L. Martinez-Salamero, J. Calvente, and A. Romero, “An H∞ control strategy for switching converters in sliding-mode current control,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 553-556, Mar. 2006.
[19]D. Cortes, J. Alvarez, and J. Alvarez, “Robust control of the boost converter,” in Proc. IEEE ICIECA, 2005, pp. 121-126.
[20]Y. U. Hong, S. H. Jung, Y. J. Woo, B. K. Choi, and G. H. Cho, “Single-chip quasi-PWM DC-DC converter with fast transient response comprising, loop-bandwidth control,” IEE Electron. Lett., vol. 41, no. 8, pp. 501-503, Apr. 2005.
[21]K. I. Hwu and Y. T. Yau, “Performance enhancement of boost converter based on PID controller plus linear-to-nonlinear translator,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 128-137, May 2010.
[22] K. I. Hwu and Y. T. Yau, “Improvement in transient upload response of boost converter using input inductor current injection based on FPGA digital control,” in Proc. IEEE APEC, 2008, pp. 78-84.
[23]K. K. S. Leung and H. S. H. Chung, “State trajectory prediction control for boost converters,” in Proc. IEEE ISCAS, 2004, vol. 5, pp. 556-559.
[24]Qingquan Tang, Bo Li, Dariusz Czarkowski, and Adrian Ioinovici, “Switched-capacitor based step-up converter for alternative energy applications,” in Proc. IEEE ISCAS, 2011, pp. 1355-1358.
[25]K. C. Wu, “A comprehensive analysis of current-mode control for DCM buck-boost converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 733-35, Jun. 2004.
[26]K. W. E. Cheng, M. Liu, and J. Wu, “Chaos study and parameter space analysis of the DC-DC buck-boost converter,” IET Proc. Electr. Power Appl., vol. 150, no. 2, pp. 126-138, Mar. 2003.
[27]G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 263-271, Feb. 2006.
[28]E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Buck-boost-type unity power factor rectifier with extended voltage conversion ratio,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1123-1132, Mar. 2008.
[29]B.-R. Lin and C. Hua, “Buck/boost converter control with fuzzy logic approach,” in Proc. IEEE IECON, 1993, vol. 2, pp. 1342-1346.
[30]Y. B. Shtessel, A. S. I. Zinober, and I. A. Shkolnikov, “Boost and buck-boost power converters control via sliding modes using dynamic sliding manifold,” in Proc. IEEE CDC, 2002, pp. 2456-2461.
[31]J. Knight, S. Shirsavar, and W. Holderbaum, “An improved reliability Cuk based solar inverter with sliding mode control,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1107-1115, Jul. 2006.
[32] M. Cacciato, A. Consoli, and V. Crisafulli, “A high voltage gain DC-DC converter for energy harvesting in single module photovoltaic applications,” in Proc. IEEE ISIE, 2010, pp. 550-555.
[33] M. Delshad and E. Shahri, “A new soft switching interleaved boost converter with high voltage gain,” in Proc. IEEE ECTI-CON, 2011, pp. 744-747.
[34] P. P. Praca, G. A. L. Henn, R. A. da Camara, N. A. L. S. Ranoyca, D. S. Oliveira, and L. H. S. C. Barreto, “A single stage high voltage gain ZVS boost converter feasible to photovoltaic battery charger systems,” in Proc. IEEE INDUSCON, 2010, pp. 1-6.
[35] M. Mousa, M. Ahmed, and M. Orabi, “A switched inductor multilevel boost converter,” in Proc. IEEE PECON, 2010, pp. 819-823.
[36] R. P. T. Bascope, L. D. S. Bezerra, C. G. C. Branco, C. M. T. Cruz, and G. J. M. Sousa, “A step-Up DC-DC converter for non-isolated on-line UPS applications,” in Proc. IEEE ISIE, 2010, pp. 602-607.
[37] S. Choi, V. G. Agelidis, J. Yang, D. Coutellier, and P. Marabeas, “Analysis, design and experimental results of a floating-output interleaved-input boost-derived DC-DC high-gain transformer-less converter,” IET Power Electron., vol. 4, no. 1, pp. 168-180, Jan. 2011.
[38] L. Huber and M. M. Jovanovic, “A design approach for server power supplies for networking applications,” in Proc. IEEE APEC, 2000, vol. 2, pp. 1163-1169.
[39] F. A. Himmelstoss and P. H. Wurm, “Low-loss converters with high step-up conversion ratio working at the border between continuous and discontinuous mode,” in Proc. IEEE ICECS, 2000, vol. 2, pp. 734-737.
[40] W. Li and X. He, “High step-up soft switching interleaved boost converters with cross-winding-coupled inductors and reduced auxiliary switch number,” IET Proc. Power Electron., vol. 2, no. 2, pp. 125-133, Mar. 2009.
[41] Fang Lin Luo,“Analysis of super-lift Luo-converters with capacitor voltage drop,” in Proc. IEEE ICIEA, 2008, pp. 417- 422.
[42] Shih-Ming Chen, Tsorng-Juu Liang, Lung-Sheng Yang, and Jiann-Fuh Chen, “A cascaded high step-up DC-DC converter with single switch for microsource applications,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1146-1153, Apr. 2011.
[43] Ki-Bum Park, Gun-Woo Moon, and Myung-Joong Youn, “High step-up boost converter integrated with voltage-doubler,” in Proc. IEEE ECCE, 2010, pp. 810-816.
[44] G. A. L. Henn, R. N. A. L. Silva, P. P. Praca, L. H. S. C. Barreto, and D. S. Oliveira, “Interleaved-boost converter with high voltage gain,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2753-2761, Nov. 2010.
[45] K. I. Hwu and Y. T. Yau, “Applying a counter-based PWM control scheme to an FPGA-based SR forward converter,” in Proc. IEEE APEC, 2006, pp. 1396-1400, 2006.
[46] K. I. Hwu and Y. T. Yau, “Improvement of one-comparator counter-based PWM control by applying a sawtoothed wave injection method,” in Proc. IEEE APEC, 2007, pp. 478- 481.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊