跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝曜竹
研究生(外文):Yao-Zhu Hsieh
論文名稱:無電解電容與單級控制之三相具電氣隔離車用電池充電器設計
論文名稱(外文):The Design of an Electrolytic Capacitor-less and Single-Stage Controlled Three-Phase Isolated Battery Charger for EV Applications
指導教授:黃明熙
口試委員:林法正賴炎生
口試日期:2012-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:電池充電器無電解電容電流漣波
外文關鍵詞:Battery chargerElectrolytic capacitor-lessCurrent ripple
相關次數:
  • 被引用被引用:3
  • 點閱點閱:3423
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
傳統之較大輸出功率之電池充電器多使用交流-直流與具電氣隔離之直流-直流轉換器兩級串接架構,為降低輸出電流漣波多於交流-直流模組使用大容量之電解電容,不僅使充電器之體積變大且亦降低壽命。本文提出以低容值與壽命長之薄膜電容、單級驅動架構與有效之控制策略來改善傳統車用電池充電器之缺點。系統分為三相全波整流模組、電流饋入之電氣隔離升-降壓轉換器與單相全波整流模組等三級串接,使用一只47μF薄膜電容於單相全波整流模組之輸出端,作為串接功率模組切換所需的電流緩衝。經由轉換器小訊號模型與電池交流阻抗之量測與建模作為電流控制器設計之參考,可有效地抑制三相整流模組之輸出電壓漣波對充電電流之影響。另外,由電感、全橋電路與變壓器所建構之電流饋入升-降壓轉換器,因輕載時具有零電壓切換及單級切換架構,可大幅提升系統效率。
為驗證所提架構與控制策略之有效性,以數位訊號處理器做為控制核心,建構具水冷4kW的測試平台,並以軟體實現所提控制策略。經由測試,所提系統輸出電壓範圍為50V至400V,且對250V/20Ah之鋰電池進行充電其電流漣波小於額定電流之4%、1C充電之效率高於94%、與功率因數可達0.93,該結果滿足車用電池充電器之規範(CHAdeMO)。


This paper presents a new electrolytic capacitor-less and single-stage controlled three-phase battery charger with electrical isolation to provide wide-range output voltage for EV applications. To achieve this, a three-phase rectifier cascaded by a current-feed isolated buck-boost converter is proposed to yield DC voltage output and eliminate the bulk electrolytic capacitor installed behind the rectifier. Therefore, the lifetime of charger can be dramatically extended. Duo to without bulk electrolytic capacitor, there exists large ripple voltage at the output of three-phase rectifier. A design procedure of the controller with high rejection for voltage disturbance is developed to mitigate the current and voltage ripples for charging battery. Besides, the power factor compared to traditional rectifier is improved by the proposed single-stage topology simultaneously. Due to ZVS in light load and single stage switching architecture for the proposed charger, the efficiency is increased.
Experimental results derived from the DSP-based controlled charger will be presented. The charger rating is 4 kW and output voltage is from 50V to 400V. It will be shown that the output current and voltage ripple is reduced significantly without any electrolytic capacitors in the proposed charger. It will also be demonstrated that the efficiency is nearly 96% and the power factor is also improved at rated load compared that for rectifier. These experimental results therefore confirm the superb performance of the proposed topology and control techniques.


中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 研究方法 8
1.4 論文大綱 12
第二章 車用電池充電系統之原理與分析 13
2.1 前言 13
2.2 三相功率因數之定義 13
2.2.1 三相橋式整流器 17
2.3 電路之基本架構介紹 20
2.3.1 降壓模式動作原理 22
2.3.2 降壓模式穩態分析 27
2.3.3 升壓模式動作原理 28
2.3.4 升壓模式穩態分析 32
2.3.5 連續與非連續導通模式分析 33
2.3.6 非連續模式之電路時序分析 36
2.4 二次電池充電方法 42
2.4.1 定電壓充電法 42
2.4.2 定電流充電法 43
2.4.3 定電流-定電壓充電法 43
2.4.4 正脈衝充電法 44
2.4.5 正負脈衝充電法 44
第三章 系統設計與控制策略 46
3.1前言 46
3.2 硬體電路設計 47
3.2.1 高頻變壓器設計 48
3.2.2 電感設計 54
3.2.3 功率晶體及二極體之選用 56
3.2.4 功率級佈線設計 56
3.2.5 硬體保護電路 58
3.2.6 周邊電路架構 59
3.3 軟體規劃與設計 60
3.3.1 軟體規劃 62
3.3.2 軟體流程規劃 63
3.4 系統建模 65
3.4.1 轉換器之小訊號模型數學推導 65
3.4.2 二次電池之動態阻抗量測與分析 68
3.4.3 控制器設計 70
第四章 實驗結果與討論 76
4.1 前言 76
4.2 實驗設備 77
4.3 連續與非連續模式下之開關波形 78
4.4 輸出電壓電流漣波抑制效果 81
4.4.1 電流迴路頻寬量測 81
4.4.2 輸入電壓擾動對輸出電流漣波之影響-頻域量測 82
4.4.3 高壓電池充電特性-時域量測 85
4.4.4 低壓電池充電特性-時域量測 87
4.5 二次電池充電曲線 89
4.6 各電壓及負載下之功率因數及效率量測 89
第五章 結論與未來展望 92
5.1 結論 92
5.2 未來展望 93
參考文獻 94
符號彙編 102



[1] 經濟部能源局,“長期負載預測與電源開發規劃摘要報告”,99年2月。
[2] EUROPEAN COMMISSION, “World Energy Technology Outlook 2050”, pp. 32-33.
[3] 車輛研究測試中心, “全球智慧電動車現況與台灣發展建議”, pp 5-12。
[4] 承德科技股份有限公司, “電池交換站” ,CTE-BES-4832。
[5] Delco Remy proprietary, “Quick change battery,” Electric Vehicle, July 1993.
[6] S. Y. Youn and J. Y. Lee, “Electrolytic-capacitor-less AC/DC electric vehicle on-board battery charger for universal line applications,” IEEE Electron. Lett. , vol. 47, no. 13, pp.768-770, Jun. 2011.
[7] H. J. Chae, W. Y. Kim, S. Y. Yun, Y. S. Jeong, J. Y. Lee and H.T. Moon, “3.3kW on board charger for electric vehicle,” IEEE International Conference on Power Electronics, pp. 2717-2719, May 2011.
[8] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol, vol. 58, no. 7, pp. 3198-3215, Sept. 2009.
[9] S. Haghbin and K. Khan, “Integrated chargers for EV''s and PHEV''s: examples and new solutions,” ICEM Conference on XIX, pp. 1-6, Sept. 2010.
[10] H. J. Chae, H. T. Moon and J. Y. Lee, “On-board battery charger for PHEV without high-voltage electrolytic capacitor,” IEEE Electron. Lett., vol. 46, no. 25, pp.1691-1692, Dec. 2010.
[11] C. A. Bendall and W. A. Peterson, “An EV on-board battery charger,” APEC, vol. 1, pp. 26-31, Mar. 1996.
[12] T. H. Kim, S. J. Lee and W. Choi, “Design and control of the phase shift full bridge converter for the on-board battery charger of the electric forklift,” IEEE International Conference on Power Electronics, pp. 2709-2716, May 2011.
[13] J. S. Kim, G. Y. Choe, H. M. Jung, B. K. Lee, Y. J. Cho and K. B. Han, “Design and implementation of a high-efficiency on- board battery charger for electric vehicles with frequency control strategy,” IEEE Vehicle Power and Propulsion Conference, pp. 1-6, Sept. 2010.
[14] M. Grenier, M. G. Hosseini Aghdam and T. Thiringer, “Design of on-board charger for plug-in hybrid electric vehicle,” IET Power Electron. Machines and Drives, pp. 1-6, Apr. 2010.
[15] L. Solero, “Nonconventional on-board charger for electric vehicle propulsion batteries,” IEEE Trans. Veh. Technol. , vol. 50, no. 1, pp. 144-149, 2001.
[16] CHAdeMO Association, " Desirable characteristics of public quick charger ," 25th Jan. 2011.
[17] M. Hartmann, T. Friedti and J. W. Kolar, “Three-phase unity power mains interfaces of high power EV battery charging systems,” Power Electronics for Charging Electric Vehicles, Mar. 2011.
[18] K. Kobayashi, N. Yoshida, Y. Kamiya, Y. Daisho, S. Takahashi, “Development of charge system for electric vehicle,” IEEE Vehicle Power and Propulsion Conference , pp. 1-6, Sept 2010.
[19] D. O''Sullivan, M. Willers, M. G. Egan, J. G. Hayes, P. T. Nguyen and C. P. Henze, “Power factor corrected single-stage inductive charger foe electric vehicle battery,” IEEE Power Electronics Specialists Conference, vol. 1, no. 1, pp. 509-516, Jun, 2000.
[20] F. Musavi, W. Eberle and W. G. Dunford, “Efficiency evaluation of single-phase solutions for AC-DC PFC boost converters for PHEV battery charger,” IEEE Vehicle Power and Propulsion Conference, pp. 1-6, Sept 2010.
[21] Kikusui, “EV quick charger,” Dec 2011.
[22] Takafumi Anegawa, “Characteristics of CHAdeMO quick charging system,” Tokyo Electric Power Company, Nov 2010.
[23] S. Dusmez, A. Cook and A. Khaligh, “Comprehensive analysis of high quality power converters for level 3 off-board chargers,” IEEE Vehicle Power and Propulsion Conference, pp.1-10, Sept. 2011.
[24] H. Miwa, S.Y. Park, B.T. Clark, D.S.K. Ditzler, G. Malone, N.S. D''Souza and Jih-Sheng Lai, “Low cost universal battery charger for wide range input voltage and wide range output voltage in portable applications,” IEEE Power Electronics Specialists Conference, pp.4699-4704, Jun. 2008.
[25] D. Berndt and E. Neissner, “Gas evolution and thermal behaviour of valve regulated lead acid batteries under abnormal operational conditions,” VARTA Batterie AG.
[26] T. Ikeyaa, N. Sawadab, J. I. Murakamic and K. Kobayashid, “Multi-step constant-current charging method for an electric vehicle nickel metal hydride battery with high energy efficiency and long cycle life,” Journal of Power Sources, 2002.
[27] E. M. Valeriote, T. G. Chang, D. M. Jochim, “fast charging of lead-acid batteries,” IEEE Battery Conference on Applications and Advances, pp. 33-38, Jan. 1994.
[28] H. A. Kiehne, “Battery technology handbook,” Expert Verlag, Germany, 1989.
[29] SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler, SAE J1772, Jan. 2010.
[30] F. Musavi, M. Edington, W. Eberle and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol.3, no. 1, pp.413-421, Mar. 2012.
[31] C. H. Yoo , D. S. Oh , S. S. Hong and S. K. Han, “The RMS current stress reduction technique in link capacitor of two stage AC/DC converter,” IEEE International Conference on Power Electronics, pp. 192-198, May 2011.
[32] S. Jaganathan and Gao. Wenzhong, “Battery charging power electronics converter and control for plug-in hybrid electric vehicle,” IEEE Vehicle Power and Propulsion Conference, pp. 440-447, Sept. 2009.
[33] D. C. Erb, O. C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” IEEE Applied Power Electronics Conference, pp. 2066-2072, Feb. 2010.
[34] R. P. Torrico-Bascope, D. S. OliveiraJr, C. G. C. Branco and F. L. M. Antunes, “A UPS with 110V/220V input voltage and high-frequency transformer isolation,” IEEE Trans. Ind. Electron. , vol. 55, pp. 2984-2996. Aug. 2008.
[35] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron. , vol. 27, no. 8, pp. 3728-3794, Aug. 2012.
[36] Electrolytic Capacitor Lifetime Estimation, “Electrolytic capacitor lifetime estimation,” JIANGHAI EUROPE GmbH, Jan. 2010.
[37] Q. Zhao, F. C. Lee and F.S. Tsai, “Voltage and current stress reduction in single-stage power factor correction AC/DC converters with bulk capacitor voltage feedback,” IEEE Trans. Power Electron. , vol. 17, no. 4 , pp. 477-484. Jul. 2002.
[38] J. C. Hung, T. F. Wu, S. Y. Tseng and Y. M. Chen, “High power factor single-stage ZVS charger with coupled inductors,” IEEE Industry Applications Conference, vol. 3, pp. 1890-1897, Oct. 2003.
[39] G. Venkataramanan, “A direct AC-DC converter for battery chargers,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 126-130, Jun. 1997.
[40] D. W. Shimer, A. C. Lange and J. N. Bombay, “A high-power switch-mode DC power supply for dynamic loads,” IEEE Industry Applications Society Annual Meeting, vol. 2, pp. 1097-1105, Oct. 1994.
[41] M. C. Ghanem, K. Al-Haddad and G. Roy, “A New Control Strategy to Achieve Sinusoidal Line Current in a Cascade Buck-Boost Converter,” IEEE Trans. Ind. Electron. , vol. 43, no. 3, pp. 441-449, Jun. 1996.
[42] R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input AC/DC converter,” IEEE Trans. Power Electron. , vol. 16, no. 1 , pp. 34-45, Jan. 2001.
[43] Y. H. Ho, “Ac to dc converting circuit applicable to power charging module,” U.S. Patent, Pub. No. 20110149606 A1, (Jun. 23, 2011).
[44] R. C. Cope and Y. Podrazhansky, “the art of battery charging,” Battery Conference on Applications and Advances, pp. 233-235, 1999.
[45] R. F. Nelson and M. A. Kepros, “AC ripple effects on VRLA batteries in float applications,” Battery Conference on Applications and Advances, pp. 281-289, Aug. 2002.
[46] B. Dickinson and J. Gill, “Issues and benefits with fast charging industrial batteries,” Battery Conference on Applications and Advances, pp. 223-229, Jan 2000.
[47] Joe Buxton, “Designer guide to charging Li-ion battery,” Design Engineer Battery Chargers.
[48] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron. , vol. 51, no. 3, pp. 641-660, Jun. 2004.
[49] U. Kamnarn and V. Chunkag, “Analysis and design of a modular three-phase AC-to-DC converter using CUK rectifier module with nearly unity power factor and fast dynamic response,” IEEE Power Electronics Specialists Conference, pp.1944-1950, Jun. 2008.
[50] U. Kamnarn and V. Chunkag, “A power balance control technique for operating a three-phase AC to DC converter using single-phase CUK rectifier Modules,” IEEE Industrial Electronics and Applications, pp. 1-6, May 2006.
[51] D. C. Erb, O. C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” IEEE Applied Power Electronics Conference and Exposition, pp. 2066 - 2072, Feb. 2010.
[52] M. S. Huang, P. Y. Yeh, J. R. Huang and C. H. Liao, “Novel bi-directional AC-DC converter for electrical vehicle battery testing,” IECON, pp. 1480-1485, Nov 2011.
[53] D. W. Shimer, A. C. Lange and J. N. Bombay, “A high-power switch-mode DC power supply for dynamic loads,” IEEE Industry Applications Society Annual Meeting, pp.1097-1105, Oct. 1994.
[54] P. M. Barbosa, “Three-phase power factor correction circuits for low-cost distributed power systems,” Doctor of Philosophy in Electrical Engineering, Jul. 2002.
[55] C. B. Andrianirina, A. Rufer, N. Giandomenico and F. Besson, “A flexible 4kW - 3 phase 2 switch PFC power rectifier for supplying a modern EDM machine,” International Conference on Power Electronics, Intelligent Motion and Power Quality, Jun. 2005.
[56] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 813-819, 2001.
[57] A. A. Badin and I. Barbi, “Simplified control technique for three-phase rectifier PFC based on the scott transformer,” IEEE Industrial Electronics, vol. 2, pp. 931-936, Jul 2006.
[58] A. Kawamura and T. Yanagihara, “state of charge estimation of sealed lead-acid batteries used for electric vehicles,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 583-587. May 1998.
[59] 張天錫,電力電子學,second edition。
[60] Mohan Undeland Robbins, “Power Electronics,” Media Enhanced Third Edition, 2003.
[61] Ali Mohamed Eltamaly, “Power Electronics,” Mansoura University Faculty of Engineering.
[62] Robert W. Erickson and Dragan Maksimovic, “Fundamentals of Power Electronics Second Edition,” Kluwer Academic Publishers.
[63] J. I. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron. , vol. 23, no. 2, pp. 715-722, Mar 2008.
[64] T. Palanisamy, “charging techniques for a universal lead-acid battery charger,” IEEE Power Sources Symposium, pp. 72-76, Jun 1990.
[65] C. C. Hua and M. Y. Lin, “A Study of charging control of lead-acid battery for electric vehicles,” IEEE International Symposium Industrial Electronics, vol. 1, pp.135-140, 2000.
[66] S. Y. Fan, G. K. Chang and S. Y. Tseng, “A reflex charger realized by multi-interleaved buck-boost converters,” IEEE Industrial Electronics and Applications, pp. 1215-1220, Jun 2011.
[67] 謝沐田,高低頻變壓器設計,全華書局,2008.10.06。
[68] M. C. Caponet, F. Profumo, R. W. De Doncker and A. Tenconi, “Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits,” IEEE Power Electronics Specialists Conference, vol.2 , pp. 916-921, 2000.
[69] I. Buchmann, “Batteries in a Portable World,” 2011.
[70] J.M. Hawkins, L.O. Barling, “Some aspects of battery impedance characteristics,” IEEE Telecommunications Energy Conference, pp. 271-276, Oct 1995.
[71] 鐵氧體材料特性曲線,美磁


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top