跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林弘修
研究生(外文):Hong-Shiou Lin
論文名稱:電火花放電法製備奈米金屬流體及其控制參數之研究
論文名稱(外文):Preparation of Nano-Metal Fluid by Spark Discharge System and its Control Parameters Study
指導教授:曾國雄曾國雄引用關係
口試委員:黃仁春龍仁光
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:放電加工機電火花放電法奈米銀:奈米銅奈米鈦奈米鋁
外文關鍵詞:Electric Discharge MachiningElectric Spark Discharge MethodNano SilverNano CopperNano TitaniumNano Aluminum
相關次數:
  • 被引用被引用:5
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以往對於金屬奈米顆粒的製備概念都是以化學的方式,以添加懸浮劑來達到奈米粒徑與濃度的控制;本研究提出利用放電加工機(EDM),以電火花放電(ESDM)方式,透過電弧(Arc)將金屬材料裂解成奈米大小的顆粒,製程中無需添加化學藥劑,僅需利用純水或酒精等純溶液作為介質,透過設定電壓及電流等參數,並選擇各種放電脈寬時間(TON-TOFF)即可製備出懸浮於介電液中的金屬奈米顆粒,除了極高的製程效率,還可以大量生產並且不具有汙染問題,對於奈米材料的製備極具貢獻。然而奈米流體特性與製程參數之間有著緊密的關係,在放電期間通過電極的極間電壓、電流值、介電液與環境溫度等因素,皆會影響奈米流體的濃度與奈米顆粒的大小,故本論文將探討在各種放參數設定對於製備奈米金屬流體的影響,並選取純度99.9%的銀、銅、鈦與鋁作為主要研究的對象,最後利用可見光-紫外光光譜儀(UV-Vis)、粒徑表面電位儀(Zetasizer)與電子顯微鏡(SEM)等設備分析實驗結果;實驗結果說明了放電的脈寬時間控制,除了會影響各種金屬流體的濃度與流體在製程中的溫度上升幅度,也會影響顆粒的大小。另外,因鋁易氧化的特性,需加入特殊的製程設定才能順利地製備出鋁流體。

In the previous studies, the preparation of metallic nanoparticles has almost used chemical methods by using the addition of surfactants to achieve the particle size and concentration controlling. In this study, the Electric Spark Discharge Method (ESDM) was proposed by Electric Discharge Machining (EDM). ESDM can be used to convert the metallic materials to suspended nanoparticles through the arcing process without adding any chemical additives. During the process only pure solution such as deionized water or alcohol etc was used, through the adjustment of the process parameters like voltage, current, and discharge on-off duration, the metal nanoparticles suspension in pure solution can be prepared. In addition ESDM also can be used for mass production and don’t have pollution problems. However, the characteristics of nanofluid have a close relationship with process parameters, include discharge voltage, current, dielectric fluid and temperature etc factors, that will be affect the particle size and the concentration of nanofluid. Therefore, this study will focus on 99.9% purity metals of silver, copper, titanium and aluminum to explore the different process parameters and their effects on the preparation of metallic nanofluid. The analysis equipments, such as UV-Visible spectroscopy (UV-Vis), particle size and surface charge analysis (Zetasizer) and Scanning Electron Microscope (SEM) were used to analyze the products. The results explain on-off duration can affect the concentration and temperature in the ESDM that can also affected the particle size. In addition, because of aluminum is easily oxidized, that must be added to special parameter that will can successful fabricated the aluminum fluid.

摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 奈米金屬的特性與應用 2
1.3 研究動機與目的 3
1.4 研究方法與步驟 4
1.5 論文架構 6
第二章 放電加工機與奈米流體介紹 7
2.1 放電加工機介紹 7
2.1.1 放電加工之基本原理 8
2.1.2 放電加工機的系統架構 9
2.1.3 放電加工機的參數與環境因素 11
2.1.4 放電加工機製備奈米流體原理 12
2.2 奈米流體介紹 15
2.2.1 奈米顆粒的懸浮機制 17
2.2.2 奈米顆粒的布朗運動 18
2.2.3 DLVO平衡理論 20
2.2.4 奈米顆粒的Zeta-Potential 23
2.2.5 酸鹼值(PH)與穩定度關係 26
2.3 金屬的特性分析 27
2.3.1 金屬-銀 27
2.3.2 金屬-銅 28
2.3.3 金屬-鈦 29
2.3.4 金屬-鋁 30
第三章 製備金屬流體的方法與分析設備 32
3.1 電火花放電法 32
3.1.1 電漿態 34
3.1.2 介電液的選擇 35
3.1.3 電極的設計 36
3.1.4 電極損耗與極性的關係 37
3.2 放電脈寬與放電週期 38
3.2.1 理想波形圖 38
3.2.2 實際波形圖 39
3.3 金屬流體的製備與分析流程 40
3.4 分析設備介紹 41
3.4.1 紫外光/可見光分光光譜儀(UV-Visible Spectroscopy) 41
3.4.2 雷射光散射儀(Zetasizer Nano System) 42
3.4.3 掃描式電子顯微鏡(Scanning Electron Microscope) 43
3.4.4 X光能譜分析儀(Energy Dispersive X-ray Analysis) 44
3.4.5 X光繞射儀(X-Ray Diffraction) 45
第四章 製程參數與金屬流體的特性分析 46
4.1 製程參數–電流(IP)設定 46
4.2 銀流體之製程參數分析 48
4.2.1 參數TON-TOFF相同比例之銀流體分析 49
4.2.2 參數TON增加之銀流體分析 51
4.2.3 參數TOFF增加之銀流體分析 53
4.2.4 銀流體之特性分析 55
4.3 銅流體之製程參數分析 57
4.3.1 參數TON-TOFF相同比例之銅流體分析 58
4.3.2 參數TON增加之銅流體分析 60
4.3.3 參數TOFF增加之銅流體分析 62
4.3.4 銅流體之特性分析 64
4.4 鈦流體之製程參數分析 66
4.4.1 參數TON-TOFF相同比例之鈦流體分析 67
4.4.2 參數TON增加之鈦流體分析 69
4.4.3 參數TOFF增加之鈦流體分析 71
4.4.4 鈦流體之特性分析 73
4.5 鋁流體之製程參數分析 75
4.5.1 純水-鋁 76
4.5.2 酒精-鋁 78
4.5.3 鋁製程參數與流體特性討論 80
4.6 結果與討論 82
第五章 結論 86
5.1 結論 86
5.2 本論文之貢獻 88
5.3 未來展望 89
參考文獻 90


[1]K. H. Tseng, D. C. Tien, C. Y. Liao and T. T. Tsung, "Colloidal Silver Fabrication Using the Spark Discharge System and Its Antimicrobial Effect on Staphylococcus Aureus," Medical Engineering & Physics, vol. 30, no. 8, 2008, pp. 948 - 952.
[2]井上潔 著, 黃錦鐘 譯,放電加工, 高立圖書,1998。
[3]陳竹男 著,放電加工原理與加工技術,台北:建宏書局,1976。
[4]林洋鑫、李雅鈴,「線切割放電加工機技術發展分析與應用」,機械工業,vol. 276,2006年,6-16頁。
[5]湯又錫,超硬合金之複數微細槽加工,碩士論文,國立中央大學機械工程研究所,2002。
[6]B. M. Schumacher, "After 60 Years of EDM the Discharge Process Remains Still Disputed," Journal of Materials Processing Technology, vol. 149, 2004, pp. 376-381,.
[7]陳鈺鈞,電化學放電法製備奈米銀流體之性質研究,碩士論文,國立臺北科技大學電機工程研究所,2008。
[8]王冠斐、賴山強,「膠體中的物理簡介」,物理雙月刊,23卷,4期,2001。
[9]C. H. Lo, T. T. Tsung and H. M. Lin, "Preparation of Silver Nanofluid by the Submerged Arc Nanoparticle Synthesis System (SANSS)," Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 659-662.
[10]H. Chang and M. K. Liu, "Fabrication and Process Analysis of Anatase Type TiO2 Nanofluid by an Arc Spray Nanofluid Synthesis System," Journal of Crystal Growth, vol. 304, 2007, pp. 244-252.
[11]N. Ichinose, Y. Ozaki and S. Kashu, Superfine particle technology, London, New York, Springer, 1990.
[12]D. C. Tien, K. H. Tseng, C. Y. Liao, J. C. Huang and T. T. Tsung, "Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method," Journal of Alloys and Compounds, vol. 463, 2008, pp. 408-411.
[13]陳光龍,納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備,碩士論文,國立中央大學化學工程研究所,2000。
[14]陳時欣,"食品奈米化的製程http://niufood.niu.edu.tw/nano/process/ pages.php?ID=process."2009.
[15]P. C. Hiemenz, Principles of Colloid Surface Chemistry, New York, Marcel Dekker, 1997.
[16]黃仁春,脈衝火花放電綠色合成法製備奈米金膠體溶液之研究,博士論文,國立臺北科技大學電機工程研究所,2011。
[17]B. V. Derjaguin and L. Landau, "Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes," Acta Phys. Chim. URSS, vol. 14, 1941, pp. 633-662.
[18]E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, New York, Elsevier, 1948.
[19]E. J. W. Verwey and J. TH. G. Overbeek, "Theory of the Stability of Lyophobic Colloids," Journal of Physical and Colloid Chemistry, vol. 51, 1947, pp. 631-636.
[20]X. F. Peng, X. L. Yu, L. F. Xia and X. Zhong, "Influence Factors on Suspension Stability of Nanofluids," Journal of Zhejiang University (Engineering Science), vol. 41, 2007, pp. 577-580.
[21]蕭凱文,磁性顆粒在磁場中之運動軌跡,碩士論文,國立中央大學環境工程研究所,2004。
[22]G. M. Fair, J. C. Geyer and D. A. Okum, Water Purification Andwaste Water Treatment and Disposal, New York, John Wiley and Sons, 1968.
[23]Ian D. Morrison and Sydney Ross, Colloidal Dispersions: Suspensions, Emulsions, and Foams, New York, John Wiley & Sons, 2002.
[24]K. H. Tseng, C. Y. Liao and D. C. Tien, "Silver Carbonate and Stability in Colloidal Silver: A By-Product of the Electric Spark Discharge Method," Journal of Alloys and Compounds, vol. 493, Issues 1-2, 2010, pp. 438-440.
[25]陳冠志,量化電弧放電法製備奈米銀流體過程與懸浮穩定性分析,碩士論文,國立臺北科技大學電機工程研究所,2009。
[26]廖志裕,以電火花放電法製備膠體銀應用於奈米顆粒離子導入系統之研究,博士論文,國立臺北科技大學電機工程研究所,2010。
[27]K. H. Tseng and C. Y. Liao, "Production of Silver Ions from Colloidal Silver by Nanoparticle Iontophoresis System," Journal of Nanoscience and Nanotechnology, vol. 11, no. 3, 2011, pp. 1991-1995.
[28]M. J. Donachie, TITANIUM: A Technical Guide, Metals Park, OH: ASM International, 2000.
[29]L. M. William and N. H. Cecile, Chemistry: Principles and Reactions, New York, Saunders College, 2008.
[30]G. A. Smook, Handbook for Pulp & Paper Technologists (3rd edition), Angus Wilde Publications, 2002.
[31]V. N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications, Boca Raton, Taylor and Francis, 2006.
[32]胡啟章 著,電化學原理與方法,五南圖書出版公司,2011。
[33]K. H. Tseng, Y. C. Chen and J. J. Shyue, "Continuous Synthesis of Colloidal Silver Nanoparticles by Electrochemical Discharge in Aqueous Solutions" Journal of Nanoparticle Research, vol. 13, no. 5, 2011, pp. 1865-1872.
[34]K. H. Tseng and J. C. Huang, "Pulsed Spark-Discharge Assisted Synthesis of Colloidal Gold Nanoparticles in Ethanol," Journal of Nanoparticle Research, vol. 13, no. 7, 2011, pp. 2963-2972.
[35]J. K. Lung, J. C. Huang, D. C. Tien, C. Y. Liao, K. H. Tseng, T. T. Tsung, W. S. Kao, T. H. Tsai, C. S. Jwo, H. M. Lin and L. Stobinski, "Preparation of Gold Nanoparticles by Arc Discharge in Water," Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 655-658.
[36]H. Chang, X. Q. Chen, C. S. Jwo and S. L. Chen, "Electrostatic and Sterical Stabilization of CuO Nanofluid Prepared by Vacuum Arc Spray Nanofluid Synthesis System (ASNSS)," Materials Transactions, vol. 50, no. 8, 2009, pp. 2098-2103.
[37]H. Chang and Y. C. Chang, "Fabrication of Al2O3 Nanofluid by a Plasma Arc Nanoparticles Synthesis System," Journal of Material Processing Technology, vol. 207, 2008, pp. 193-199.
[38]N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo and G. A. J. Amaratunga, "Properties of Carbon Onions Produced by an Arc Discharge in Water," Journal of Applied Physics, vol. 92, 2002, pp. 2783-2788.
[39]S. M. Liu, M. Kobayashi, S. Sato and K. Kimura, "Synthesis of Silicon Nanowires and Nanoparticles by Arc-Discharge in Water," Chemical Communications, 2005, pp. 4690-4692.
[40]A. A. Ashkarran, A. I. zad, M. M. Ahadian and S. A. M. Ardakani, "Synthesis and Photocatalytic Activity of WO3 Nanoparticles Prepared by the Arc Discharge Method in Deionized Water," Nanotechnology, vol. 19, no. 19, 2008, pp. 195709.
[41]陳世昌,對工具鋼放電加工面之改善效果,碩士論文,國立中央大學機械工程研究所,2003。
[42]S. H. Teo, P. C. Tan and W. Kurnia, "Effects of Powder Additives Suspended in Dielectric on Crater Characteristics for Micro Electrical Discharge Machining," Journal of Micromechanics and Microengineering, vol. 17, 2007, pp. 91-98.
[43]T. Kim, C. H. Lee, S. W. Joo and K. Lee, "Kinetics of Gold Nanoparticle Aggregation: Experiments and Modeling," Journal of Colloid and Interface Science, vol. 318, no.2, 2008, pp. 238–243.
[44]林麗娟,「X 光繞射原理及其應用」,工業材料,86期,1994年。
[45]A. L. Patterson, "The Scherrer Formula for X-ray Particle Size Determination," Physical Review, vol. 56, issue 10, 1939, pp. 978-982.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top