跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何恭宇
研究生(外文):Kung-Yu Ho
論文名稱:移動式家具之路徑規劃、追隨與避障控制
論文名稱(外文):Path Planning, Following and Obstacle Avoidance Control for Mobile Furniture
指導教授:姚立德姚立德引用關係
口試委員:王偉彥王乃堅張文中練光祐
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:119
中文關鍵詞:移動式家具無線定位系統路徑規劃路徑追隨
外文關鍵詞:Mobile FurnitureWireless Locating SystemPath PlanningPath Following
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著機器人與智慧型住宅的發展,智慧化居家生活設備將在未來深入每個家庭之中。本研究使用一套無線定位系統,為本研究以嵌入式系統結合各種模組與感測器而成的移動式家具作室內環境之定位計算,並延伸出一可定位遙控器,使用者除了可對移動式家具發射遙控命令指定預設目的地外,利用其定位功能可使移動式家具前往使用者所在位置。
本文利用路徑演算法規劃出適當的預設幹道資訊儲存於移動式家具中,當移動式家具被給與目的地時,判斷該應用哪條預設幹道結合切入及離開此幹道的貝茲曲線規劃此次進行移動任務用的路徑,設計路徑追隨控制器讓移動式家具追隨在此路徑上,考慮移動式家具在行走過程中會遇到障礙物,因此使用聲納感測器設計避障控制器,使移動式家具能閃避障礙物,當完成避障後,將設計一路徑回歸策略,使得移動式家具能依此策略回到原規劃路徑上,並再次進行路徑追隨以前往目的地。


With the development of robot and intelligent house devices, intelligent house will be pervasive and available in modern home. A wireless locating system is used in this thesis to give the position information to the mobile furniture, combined with some modules and sensors and controlled by the embedded system. By using a locatable remote controller, the mobile furniture can get the default positions from the set remote commands and also can move to the position of the user by the locating function.
When a goal is given to the mobile furniture, a suitable path is calculated by an algorithm according to the map stored in the mobile furniture. A fuzzy controller is designed in this thesis to control the mobile furniture to follow the planned path, and sonar sensors are designed to detect obstacles. A strategy is applied to guide the mobile furniture back to the planned path and to follow the path again to arrive the default position.


摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1定位系統 2
1.2.2路徑規劃 3
1.2.2.1全域路徑規劃 3
1.2.2.2局部路徑規劃 4
1.2.3路徑追隨 4
1.2.4導航與避障 5
1.3研究動機與目的 6
1.4論文架構 7
第二章 移動式家具 9
2.1系統架構 9
2.2核心控制系統 12
2.2.1嵌入式系統 12
2.2.2姿態角感測器 15
2.3動力系統 16
2.3.1 Basic Stamp微控制器 16
2.3.2智慧輪模組 18
2.3.3 HB-25驅動器 20
2.3.4聲納感測器 21
第三章 無線3D定位系統 22
3.1系統架構 22
3.2距離量測 23
3.3無線感測網路 24
3.3.1 U-force RF通訊模組 24
3.3.2同步訊號 25
3.3.3測距資料 26
3.4發射處理單元 26
3.4.1發射異波速訊號 27
3.4.1.1 發射同步訊號 28
3.4.1.2 發射測距訊號 28
3.4.2 USB-UART傳輸介面 29
3.4.3 TPU控制器 30
3.5距離感測器 31
3.5.1測距訊號接收模組 32
3.5.2 DSR控制器 32
3.6遙控器 34
3.7座標量測 37
第四章 路徑規劃 40
4.1地圖建置 40
4.2 Quadric Error Metrics 41
4.3 A*最短路徑演算法 47
4.4輔助特徵點 49
4.5預設幹道 50
第五章 路徑追隨與避障 53
5.1運動方程式 53
5.2路徑搜尋 57
5.3追隨控制器 64
5.3.1追隨控制器系統架構 65
5.3.2追隨控制器之設計 67
5.4避障控制器 69
5.4.1斥力轉差 70
5.4.2避障控制器之設計 73
5.5路徑回歸策略 75
第六章 實驗結果 77
6.1定位系統 77
6.1.1實驗環境 77
6.1.2定點量測 79
6.2整合實驗 83
6.2.1實驗一 83
6.2.2實驗二 87
6.2.3實驗三 91
6.2.4實驗四 102
第七章 結論與未來展望 111
7.1結論 111
7.2未來展望 112
參考文獻 113


[1] E. Prassle, J. Scholz and P. Fiorini, “A Robotic Wheelchair for Crowded Public Environments,” IEEE Robotics and Automation Magazine, 2001, pp.38-45.
[2] K. K. Lee, P. Zhang, Y. Xu and B. Liang, “An Intelligent Service-Based Network Architecture for Wearable Robots,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 34, 2004, no. 4.
[3] J. Palacin, J. A. Salse, I. Valganon and X. Clua, “Building a Mobile Robot for a Floor-Cleaning Operation in Domestic Environments,” IEEE Trans. on Instrumentation and Measurement, vol. 53, 2004, no. 5.
[4] C Balaguer, A. Gimenez, A. J. Huete, A.M. Sabatini, M. Topping, and G. Bolmsjo, “The Mats Robot,” IEEE Robotics and Automation Magazine, 2006, pp.51-58.
[5] M. Kim, S. Kim, S. Park, M. T. Choi, M. Kim and H.Gomaa, “Service Robot for the Elderly,” IEEE Robotics and Automation Magazine, 2009, pp.34-45.
[6] I. Guvenc and C.C. Chong, “A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques,” in Proc. IEEE Int. Conf. on Communications Surveys & Tutorials, 2009, pp. 107-124.
[7] N.A. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and Modeling of Ultrawidebnad TOA-Based Ranging in Indoor Multipath Environments,” in Proc. IEEE Int. Conf. on Vehicular Technology, 2009, pp. 1046-1058.
[8] I. Guvenc and Z. Sahinoglu, “Threshold-based TOA estimation for impulse radio UWB systems,” in Proc. IEEE Int. Conf. on Ultra-Widebnad, 2005, pp. 420-425.
[9] X. Wang, Z. Wang, and B. O’Dea, “A TOA-Based location algorithm reducing the errors due to non-line-of-sight(NLOS) propagation,” IEEE Trans. on Vehicular Technology, 2003, pp. 112-116.
[10] M. J. Abedin and A. S. Mohan, “Localization of 3-D Near-field Electromagnetic Sources Using C-SPRIT,” in Proc. IEEE Int. Conf. on Radio and Wireless Symposium, 2007, pp. 113-116.
[11] D. Akbarov, H. Choi, Y. Park, G. Han, and J. Moon, “Hybrid Pattern Matching/TDOA Positioning Method for CDMA Networks,” in Proc. Conf. on Positioning Navigation and Communication, 2007, pp. 199-203.
[12] D. Carevic, “Automatic Estimation of Multiple Target Positions and Velocities Using Passive TDOA Measurements of Transients,” IEEE Trans. on Signal Processing, vol. 55, no. 2, 2007, pp. 424-436.
[13] P. Svaizer, M. Matassoni, and M. Omologo, “Acoustic Source Location in a Three-Dimensional Space Using Crosspower Spectrum Phase,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol 1, 1997, pp. 231-234.
[14] Y. Jeong, H. You, W. C. Lee, D. Hong, D. H. Youn, and C. Lee, “A Wireless Position Location System Using Forward Pilot Signal,” in Proc. IEEE Int. Conf. on Vehicular Technology, vol. 2, 2000, pp. 1354-1357.
[15] M. Garcia, C. Martinez, J. Tomas, and J. Lloret, “Wireless Sensors Self-Location in an Indoor WLAN Environment,” in Proc. Int. Conf. on Sensor Technologies and Applications, 2007, pp. 146-151.
[16] T. M. Fernandez, J. Rodas, C. J. Escudero, and D. I. Iglesia, “Bluetooth Sensor Network Positioning System with Dynamic Calibration,” in Proc. IEEE Int. Conf. on Wireless Communication Systems, 2007, pp. 45-49.
[17] T. Parker and K. Langendoen, “Adumbrate: Motion Detection with Unreliable Range Data,“ in Proc. IEEE Int. Conf. on Networked Sensing Systems, 2007, pp. 221-228.
[18] N. Patwari, A. O. Hero.III, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative Location Extimation in Wireless Sensor Networks,” IEEE Trans. on Signal Processing, vol. 51, no. 8, 2003, pp. 2137-2148.
[19] D. Zhao, Y. Men, and L. Zhao, “Hop-Distance Algorithm for Self-Localization of Wireless Sensor Networks,” in Proc. IEEE Int. Conf. on Software Engineering, Artificial Intelligence Networking and Parallel/Distributed Computing, vol. 2, 2007, pp. 108-112.
[20] K. Srinivasan, and P. Levis, “Rssi is Under Appreciated,” in Proc. Conf. on Embedded Networked Sensors, 2005. [Online] Available: http://www.eecs.harvard.edu/emnets/index.shtml.
[21] 三角定位, [Online] Available: http://en.wikipedia.org/wiki/Triangulation
[22] 三邊量測, [Online] Available: http://en.wikipedia.org/wiki/Trilateration
[23] 雙曲線, [Online] Available: http://en.wikipedia.org/wiki/Multilateration
[24] T. C. Wilson, J. A. Barth, S. D. Pierce, P. M. Kosro, and B. W. Waldorf, “A Lagrangian Drifter with Inexpensive Wide Area Differential GPS Positioning,” in Proc. IEEE Int. Conf. OCESNS ’96.MTS/IEEE, vol. 2, 1996, pp. 851-856.
[25] GPS, [Online] Available: http://en.wikipedia.org/wiki/Global_Positioning_System
[26] H. Haddad, M. Khatib, S. Lacroix and R. Chatila, “Reactive navigation in outdoor environments using potential fields,” in Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, vol. 2, 1998, pp. 1232-1237.
[27] P. Veelaert and W. Bogaerts, “Ultrasonic potential field sensor for obstacle avoidance,” IEEE Trans. on Robotics and Automation, vol. 15, no. 4, 1999, pp. 774-779.
[28] L. C. A. Pimenta, A. R. Fonseca, G.. A. S. Pereira, R. C. Mesquita, E. J. Silva, W. M. Caminhas, M. F. M. Campos, “Robot Navigation Based on Eletrostatic Field Computation,” IEEE Trans. on Magnetics, vol. 42, no. 4, 2006, pp. 1459-1462.
[29] S. S. Ge and Y. J. Cui, “New Potential Function for Mobile Robot Path Planning,” IEEE Trans. on Robotics and Automation, vol. 16, no. 5, 2000, pp. 615-620.
[30] H. Beom and H. Cho, “Path planning for mobile robot using skeleton of free space,” in Proc. IFAC Symp. Information Control Problems for Manufacturing, 1992, pp. 509-513.
[31] B. Song, G. Tian, G. Li, F.Zhou and D. Liu, “ZigBee based Wireless Sensor Networks for Service Robot Intelligent Space,” in Proc IEEE conf on Information Science and Technology, 2011, pp. 834-838.
[32] Lagrangian grid mesh, [Online] Available: http://en.wikiversity.org/wiki/Nonlinear_finite_elements/Updated_Lagrangian_approach
[33] Euler grid mesh, [Online] Available: http://en.wikiversity.org/wiki/Nonlinear_finite_elements/Euler_Bernoulli_beams
[34] M. Garland and P. S. Heckbert, “Surface simplification using quadric error metrics,” in Proc. SIGGRAPH’97, 1997, pp. 209–216.
[35] M. Garland and P. S. Heckbert, “Simplifying Surfaces with Color and Texture using Quadric Error Metrics,” Proc. IEEE Conf. Visualization, pp. 263-269, 1998.
[36] V. Natarajan and H. Edelesbrunner, “Simplification of Three-Dimensional Density Maps,” in Proc IEEE Trans on Visualization and Computer Graphics, vol. 10, no. 5, 2004, pp. 587-597.
[37] J. Y. Hwang, J. S. Kim, S. S. Lim and K. H. Park, “A Fast Path Planning by Path Graph Optimization,” IEEE Trans on System, Man, and Cybernetics, 2003, pp. 121-128.
[38] E. M. Petriu, “Automated guided vehicle with absolute encoded guide-path,” IEEE Trans. on Robotics and Automation, vol. 7, no. 4, 1991, pp. 562-565.
[39] L. X. Wang, and J. M. Mendel, ”Generating fuzzy rules by learning from examples,” IEEE Trans. Sys., vol. 22, no. 6, 1992, pp. 263-268.
[40] D. Nguyen and B. Widrow, ”The truck backer-upper: an example of self-learning in neural networks,” in Proc. Int. Joint Conf. on Neural Networks, vol. 2, 1989, pp. 357-363.
[41] S. G. Kong and B. Kosko, “Comparison of fuzzy and neural truck backer-upper control systems,” in Proc. Int. Joint Conf. Neural Networks, vol. 3, 1990, pp. 349-358.
[42] C. M. Higgins and R. M. Goodman, “Fuzzy rule-based networks for control,” IEEE Trans. on Fuzzy Systems, vol. 2, no. 1, 1994, pp. 82-88.
[43] K. C. KOH and H. S. CHO, “A Smooth Path Tracking Algorithm for Wheeled Mobile Robots with Dynamic Constraints,” Journal of Intelligent and Robotic Systems vol. 24, no. 4, 1999, pp. 367-385.
[44] G. Antonelli, S. Chiaverini and G. Fusco, “Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking,” IEEE Trans. on fuzzy systems, vol. 15, no. 2, 2007, pp. 211-221.
[45] K. DongHyung, Y. ByungGab, L. JiYeong and H. ChangSoo, “Analysis of a Geometric Path Tracking Method for a Nonholonomic Mobile Robots Based on Vector Pursuit,” in Proc. IEEE Int. Conf. on ICROS-SICE, 2009, pp. 2926-2931.
[46] R. C. Luo and T. M. Chen, “Development of a multi-behavior-based mobile robot for remote supervisory control through the internet,” IEEE Trans. On mechatronics, vol. 5, no. 4, 2000, pp. 376-385.
[47] R. C. Luo and T. M. Chen, “Remote supervisory control of a sensor based mobile robot via internet,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, 1997, pp. 1163-1168.
[48] A. Fujimori, and S. Tani, “A navigation of mobile robots with collision avoidance for moving obstacles,” in Proc. IEEE Int. Conf. on Industrial Technology, vol. 1, 2002, pp. 1-6.
[49] X. Wang and S. X. Yang, “A neuro-fuzzy approach to obstacle avoidance of a nonholonomic Mobile Robot,” in Proc. IEEE/ASME Conf. on Advanced Iintelligent Mechatronics, 2003, pp. 29-34.
[50] S. Thongchai and K. Kawamura, “Application of fuzzy control to sonar-based obstacle avoidance mobile robot,” in Proc. IEEE Int. Conf. on Control Applications, 2000, pp. 425-430.
[51] K. Konolige, “A gradient method for real time robot control,” in Proc. IEEE Int. Symposium on Robots Research, Hayama, 1999, pp. 639-646.
[52] A. Fujimori, P.N. Nikiforuk and M. M. Gupta, “Adaptive navigation of mobile robots with obstacle avoidance,” in Proc. IEEE Trans. on Robotics and Automation, vol. 13, 1997. pp. 596-601.
[53] J. H. Lee and H. Hashimoto, ”Controlling Mobile Robots in Distributed Intelligent Sensor Network,” in Proc. IEEE Trans. on INDUSTRIAL ELECTRONICS, vol. 50, no. 5, 2003, pp. 890-902.
[54] IEEE 802.15.4, http://www.ieee802.org/15/pub/TG4.html
[55] A* search algorithm, http://blog.minstrel.idv.tw/2004/12/star-algorithm.html
[56] Dijkstra''s algorithm, http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
[57] 邱志明,基於異波速測距三維定位之無線感測網路研製,碩士論文,國立臺北科技大學,2011。
[58] 林志駿,基於室內定位系統之自動導航車路徑追隨控制,碩士論文,國立臺北科技大學,2011。
[59] Parallax, http://www.parallax.com/
[60] CH Robotics, http://www.chrobotics.com/index.php?main_page=index
[61] 貝茲曲線, http://en.wikipedia.org/wiki/B%C3%A9zier_curve


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top