跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳浩銘
研究生(外文):Hao-Ming Chen
論文名稱:結合電荷幫浦與耦合電感之高升壓型電力轉換器
論文名稱(外文):High Step-up Power Converter Based on Charge Pump and Coupling Inductor
指導教授:胡國英
指導教授(外文):Kuo-Ing Hwu
口試委員:謝振中俞齊山李永勳
口試委員(外文):Jenn-Jong ShiehChi-Shan YuYuang-Shung Lee
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:電荷幫浦耦合電感高升壓型電力轉換器KY轉換器
外文關鍵詞:Charge PumpCoupling InductorHigh Step-up Power ConverterKY Converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係提出ㄧ改良型的KY轉換器,其主要架構係結合電荷幫浦電路與耦合電感,並採用被動式箝位電路、被動式緩衝電路兩種不同的電路架構來回收漏感能量以提升效率。相較於KY轉換器,本論文所提出之新型電力轉換器其電壓轉換比可獲得大幅的提升,且具有電路簡單、控制容易的特色。於本論文中,將詳細敘述所提架構之基本操作原理與理論推導,並搭配模擬與實作結果來驗證所提架構之可行性與有效性。除此之外,本論文係採用Altera公司所生產之場效邏輯閘陣列晶片EP1C3T100C8N來作為系統控制的運算核心。

In this thesis, an improved KY converter is presented, which is constructed mainly by one charge pump and one coupling inductor. Furthermore, there are two types of circuits used to recycle the leakage inductance energy so as to enhance the efficiency. One is the passive voltage clamping circuit, and the other is the passive snubber circuit. As compared to the KY converter, the voltage conversion ratio of the proposed converter is upgraded significantly. In addition, the proposed converter is simple in structure and is easy to control. In this thesis, the basis operating principles and mathematic deductions of the proposed converter are described in detail, along with some simulated and experimental results provided to verify the feasibility and effectiveness of the proposed converter. Moreover, the field programmable gate array (FPGA), named EP1C3T100C8N made by Altera Co., is used as a control kernel of the proposed converter.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究方法 ..6
1.3 論文內容架構 7
第二章 介紹KY轉換器之動作原理及操作模式 8
2.1 前言 8
2.2 KY轉換器之架構與其動作原理 8
2.2.1 電路說明 8
2.2.2 電路符號定義及假設 9
2.2.3 電感電流無負值之工作模式 12
2.2.4 電感電流之邊界條件 13
2.2.5 電感電流有負值之工作模式 14
第三章 所提之電力轉換器 17
3.1 前言 17
3.2 所提之電力轉換器之電路架構 17
3.2.1 電路說明 17
3.2.2 電路符號定義及假設 18
3.2.3 耦合電感於電路行為之非線性等效 21
3.3 轉換器之大訊號分析 23
3.3.1 大訊號穩態分析之假設 23
3.3.2 連續導通之操作模式 23
3.3.3 電感電流之邊界條件 26
3.3.4 不連續導通之操作模式 29
3.4 轉換器之小訊號分析 32
3.5 被動式箝位及緩衝電路動作原理 37
3.5.1 架構一:被動式箝位電路 38
3.5.2 架構二:被動式緩衝電路 38
第四章 硬體電路設計 40
4.1 前言 40
4.2 系統架構 40
4.3 系統規格 41
4.4 架構一之系統研製 41
4.4.1 電感設計 42
4.4.2 能量傳輸電容與輸出電容設計 48
4.4.3 功率開關與二極體之選配 49
4.4.4 驅動電路設計 51
4.5 架構二之系統研製 52
4.5.1 電感設計 52
4.5.2 能量傳輸電容、緩衝電容與輸出電容設計 53
4.5.3 功率開關與二極體之選配 54
4.5.4 驅動電路設計 55
4.6電壓回受取樣電路 55
4.7 FPGA電路板介紹 56
第五章 軟體規劃及程式設計流程 58
5.1 前言 58
5.2 VHDL程式簡介 58
5.2.1 Library宣告區 59
5.2.2 USE宣告區 59
5.2.3 Entity宣告區 59
5.2.4 Architecture宣告區 60
5.2.5 物件模式與型別 60
5.3 程式動作流程 61
5.3.1 SPI模組 62
5.3.2 數位控制器模組(PI模組) 63
5.3.3 DPWM模組 64
第六章 模擬與實作波形 66
6.1 前言 66
6.2 電路模擬 66
6.2.1 架構一之電路模擬波形圖 67
6.2.2 架構二之電路模擬波形圖 70
6.3 實驗波形 73
6.3.1 架構一於不同負載下之波型圖 73
6.3.2 架構二於不同負載下之波型圖 81
6.4 負載變動 89
6.4.1 架構一之輸出電壓變動波形圖 90
6.4.2 架構二之輸出電壓變動波形圖 94
6.5實作相關曲線圖 97
6.5.1 效率對負載之關係圖 98
6.5.2 輸出電壓對負載之關係圖 100
第七章 結論與未來展望 102
7.1 結論 102
7.2 未來展望 102
參考文獻 104
符號彙編 110
附錄A 116


[1]Rong-Jong Wai and Wen-Hung Wang, “Design of grid-connected photovoltaic generation system with high step-up converter and sliding-mode inverter control,” IEEE CCA’07, pp. 1179-1184, 2007.
[2]L. H. Hwang, S. K. Na, H. S. Kim, H. S. Oh, Y. S. Kim, Han Xiao, Yu Ming Zhi, M. T. Cho, S. C. Chang and G. S. Choi, “A development of the solar position tracker on the program method for the small typed stand-alone PV system,” ICPE’07, pp. 217- 220, 2007.
[3]A. M. Sharaf and A. R. N. M. Reaz, “A stand alone photovoltaic (AC) scheme for village electricity,” IEEE PVSC’05, pp. 1726-1729, 2005.
[4]A. M. Sharaf and A. R. N. M. Reaz, “A low cost stand alone photovoltaic scheme for motorized hybrid loads,” IEEE SSST’04, pp. 175-179, 2004.
[5]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell: Kluwer Academic Publishers, 2001.
[6]Ned Mohan, Tore M. Undeland and William P. Robbins, Power Electronics, 3nd ed., New York: John Wiley & Sons, 2003.
[7]F. L. Luo, Y. Hong and M. H. Rashid, “Four quadrant operating Luo-converters,” IEEE PESC’00, vol. 2, pp. 1047-1052, 2000.
[8]F. L. Luo, H. Ye and M. H. Rashid, “Multiple-quadrant Luo-converters,” IEE Proceedings of Electric Power Applications, vol. 149, pp. 9-18, 2002.
[9]F. L. Luo, “Luo-converters, voltage lift technique,” IEEE PESC’98, vol. 2, pp. 1783-1789, 1998.
[10]X. Chen, F. L. Luo and Y. Hong, “Modified positive output Luo converters,” IEEE PEDS’99, vol. 1, pp. 450-455, 1999.
[11]F. L. Luo and H. Ye, “Positive output cascade boost converters,” IEE Proceedings of Electric Power Applications, vol. 151, no. 5, pp. 590-606, 2004.
[12]F. L. Luo and H. Ye, “Ultra-lift Luo-converter,” IEE Proceedings of Electric Power Applications, vol. 152, no. 1, pp. 27-32, 2005.
[13]F. L. Luo, “Seven self-lift DC-DC converters, voltage lift technique,” IEE Proceedings of Electric Power Applications, vol. 148, no. 4, pp. 329-338, 2001.
[14]F. L. Luo and H. Ye, “Negative output super-lift converters,” IEEE Transactions on Power Electronics, vol. 18, no. 5, pp. 1113-1121, 2003.
[15]F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 105-113, 2003.
[16]F. L. Luo and H. Ye, “Positive output multiple-lift push-pull switched capacitor Luo-converters,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 594-602, 2004.
[17]K. I. Hwu and Y. T. Yau, “KY converter and its derivatives,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 128-137, 2009.
[18]K. I. Hwu and Y. T. Yau, “A KY boost converter,” IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2699-2703, 2010.
[19]R. J. Wai, R.Y. Duan and K. H. Jheng, “High-efficiency bidirectional dc-dc converter with high-voltage gain,” IET Power Electronics, 2012, vol. 5, no. 2, pp. 173-184
[20]S. M. Chen, T. J. Liang, L. S. Yang and J. F. Chen, “A cascade high step-up converter with single switch for microsource applications,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1146-1153, 2011.
[21]H. L. Do, “Active-clamp soft-switching step-up converter with high voltage gain,” IET Power Electronics, vol. 4, no. 9, pp. 1043-1050, 2011.
[22]K. B. Park, G. W. Moon and M. J. Youn, “Nonisolated high step-up stacked converter based on boost-integrated isolated converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577-587, 2011.
[23]K. B. Park, C. E. Kim, G. W. Moon and M. J. Youn, “Non-isolated high step-up converter based on boost integrated half-bridge converter, ”IEEE INTELEC’09, pp. 1-6, 2009.
[24]S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2007-2017, 2010.
[25]K. B. Park, G. W. Moon and M. J. Youn, “High step-up boost converter integrated with voltage-doubler,” IEEE ECCE’10, pp. 810-816, 2010.
[26]Giorgio Spiazzi, Paolo Mattavelli and Alessandro Costabeber, “High step-up ratio flyback converter with active clamp and voltage multiplier,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3205-3214, 2011.
[27]Lung-Sheng Yang, Tsorng-Juu Liang, Hau-Cheng Lee and Jiann-Fuh Chen, “Novel high step-up DC–DC converter with coupled-inductor and voltage-doubler Circuits,” IEEE Transactions on Power Electronics, vol. 58, no. 9, pp. 4196-4206, 2011.
[28]C. T. Pan and C. M. Lai, “A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 1998-2006, 2010.
[29]Yi-Ping Hsieh, Jiann-Fuh Chen, Tsorng-Juu Liang and Lung-Sheng Yang “Novel high step-up DC-DC converter with coupled-indictor and switched-capacitor techniques for a sustainable energy system, ” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3481-3490, 2011.
[30]Yi-Ping Hsieh, Jiann-Fuh Chen, Tsorng-Juu Liang and Lung-Sheng Yang “Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques, ” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 998-1007, 2012.
[31]Yi-Ping Hsieh, Jiann-Fuh Chen, Tsorng-Juu Liang and Lung-Sheng Yang “A novel high step-up DC-DC converter for a microgrid system, ” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1127-1136, 2011.
[32]Y.-P. Hsieh, J.-F. Chen, T.-J. Liang and L.-S. Yang, “Analysis and implementation of a novel single-switch hig step-up DC-DC converter,” IET Power Electronics, vol. 5, no. 1, pp. 11-21, 2012.
[33]Y. Zhao W. Li Y. Deng snd X. He,“High step-up boost converter with passive lossless clamp circuit for non-isolated high step up applications, ” IET Power Electronics, vol. 4, no. 8, pp. 851-859, 2011.
[34]Yi Zhao, Wuhua Li, Yan Deng, Xiangning He1, Simon Lambert and Volker Pickert, “High step-up boost converter with coupled inductor and switched capacitor,” IET PEMD’10, pp. 1-6, 2010.
[35]Boris Axelrod, Yefim Berkovich and Adrian Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, 2008.
[36]B. R. Lin, F. Y. Hsieh and J. J. Chen, “Analysis and implementation of a bidirectional converter with high conversion ratio,” IEEE ICIT’08, pp. 1-6, 2008.
[37]L. S. Yang, T. J. Liang and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, 2009.
[38]Bo Yuan, Xu Yang, Donghao Li, Yunqing Pei, Jason Duan and Jerry Zhai, “A current-fed multiresonant converter with low circulating energy and zero-current switching for high step-up power conversion,” IEEE Transactions on Power Electronics, vol. 26, no. 6, pp. 1613-1619, 2011.
[39]Bo Yuan, Xu Yang, Xiangjun Zeng, Jason Duan, Jerry Zhai and Donghao Li, “Analysis and design of a high step-up current-fed multiresonant DC-DC converter with low circulating energy and zero-current switching for all active switches,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 964-978, 2012.
[40]Weichen Li, Wuhua Li, Mingyao Ma and Xiangning He, “A non-isolated high step-up converter with built-in transformer derived from its isolated counterpart,” IEEE IECON’10, pp. 3173-3178, 2010.
[41]W. Li, W. Li and X. He, “Zero-voltage transition interleaved high step-up converter with built-in transformer,” IET Power Electronics, vol. 4, no. 5, pp. 523-531, 2011.
[42]Weichen Li, Wuhua Li, Xiangning He, Simon Lambert and Volker Pickert, “Performance analysis of ZVT interleaved high step-up converter with built-in transformer,” IET PEMD’10, pp. 1-6, 2010.
[43]M. M. Islam, D. R. Allee, S. Konasani and A. A. Rodriguez, “A low-cost digital controller for a switching DC converter with improved voltage regulation,” IEEE Power Electronics Letters, vol. 2, no. 4, pp. 121-124, 2004.
[44]M. Milanovic, M. Truntic and P. Slibar, “FPGA implementation of digital controller for DC-DC buck converter,” IEEE IWSOC’05, pp. 439-443, 2005.
[45]S. Saggini, G. Garcea, M. Ghioni and P. Mattavelli, “Analysis of high-performance synchronous-asynchronous digital control for DC-DC boost converters,” IEEE APEC’05, vol. 2, pp. 892-898, 2005.
[46]H. Peng and D. Maksimovic, “Digital current-mode controller for DC-DCconverters,” IEEE APEC’05, vol. 3, pp. 899-905, 2005.
[47]Kun Wang, Nabeel Rahman, Zdravko Lukic and Aleksandar Prodic, “All-digital DPWM/DPFM controller for low-power DC-DC converters,” IEEE APEC’06, pp. 719-723, 2006.
[48]M. Scharrer, M. Halton and T. Scanlan, “FPGA-based digital pulse width modulator with optimized linearity,” IEEE APEC’09, pp. 1220-1225, 2009.
[49]J. Quintero, M. Sanz, A. Barrado and A. Lazaro, “FPGA based digital control with high-resolution synchronous DPWM and high-speed embedded A/D converter,” IEEE APEC’09, pp. 1360-1366, 2009.
[50]王天中,電源管理-數位PWM控制電源簡介,美商快捷半導體,2005。
[51]W. Zhang, G. Feng, Y. F. Liu and B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, 2004.
[52]W. Zhang, G. Feng, Y. F. Liu and B.Wu, “New digital control method for power factor correction,” IEEE Transactions on Power Electronics, vol. 53, no. 3, pp. 987-990, 2006.
[53]D. Liu and H. Li, “Design and implementation of a DSP based digital controller for a dual half bridge isolated bi-directional DC-DC converter,” IEEE APEC’06, pp. 695-699, 2006.
[54]D. He and R. M. Nelms, “Peak current-mode control for a boost converter using an 8-bit microcontroller,” IEEE PESC’03, vol. 2, pp. 938-943, 2003.
[55]D. He and R. M. Nelms, “Current-mode control of a DC-DC converter using a microcontroller: implementation issues,” IEEE IPEMC’04, vol. 2 , pp. 538-543, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top