跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張源洲
研究生(外文):Yuan-Chou Chang
論文名稱:應用FPGA於具無ADC取樣技術之全數位化功率因數修正器
論文名稱(外文):Applying FPGA to Fully-Digitalized PFC Rectifier without ADC Sampling Technique
指導教授:胡國英
指導教授(外文):Kuo-Ing Hwu
口試委員:廖益弘俞齊山李永勳
口試委員(外文):Yi-Hong LiaoChi-shan YuYuang-Shung Lee
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:全數位化FPGA無ADC 取樣技術計數器平均電流控制PFC
外文關鍵詞:Fully-DigitalizedFPGAWithout ADC Sampling TechniqueCounterAverage Current ControlPFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
眾所皆知,欲實現全數位化功率因數修正器需要使用到多顆類比數位轉換器
(Analog-to-Digital Converter, ADC),然而一顆高性能的ADC 索價不斐,因此本
論文係研製一具無ADC 取樣技術之全數位化功率因數修正器,係利用注入三角
波於功率因數修正器之感測的輸出電壓並與電壓參考值兩者相互比較來進行取
樣,同時利用鋸齒波與感測的輸入電流兩者相互比較來進行電流取樣,並搭配
FPGA 之計數器以獲得輸出電壓資訊及輸入電感電流資訊,因此不須用到
ADC。另一方面,控制器所須之正弦參考命令乃利用零點偵測電路觸發事先撰
寫於FPGA 之正弦表(Sinusoidal Table),藉由讀取正弦表內之值來做為電流參考
值,並同時搭配傳統平均電流控制法則以產生適當之控制力來驅動功率開關切
換,不僅可使得輸出電壓得以穩定地被調控在所設定的值,同時亦可使得輸入
電流儘可能地為弦波形式且追隨輸入電壓的相位。最後,本論文將藉由結合模
擬軟體Active-HDL 與Matlab/Simulink 來模擬所提之無ADC 取樣技術之全數位
化功率因數修正器,以初步驗證其可行性,並以FPGA 為控制核心來進行相關
實驗,以驗證此架構之有效性。

As generally recognized, in order to realize the fully-digitalized PFC rectifier,
several analog-to-digital converters (ADCs) are indispensable. However, one
high-performance ADC is costly. Consequently, a fully-digitalized PFC rectifier without
ADC sampling is presented. As for the digital output voltage information, it is obtained
by injecting the triangular wave into the sensed output voltage, comparing this resultant
signal with the output voltage reference, and counting the low level of the resulting
signal based on the counter in the FPGA. As for the digital inductor current information,
it is obtained by comparing the sawtooth wave with the sensed inductor current after
filtering, and counting the low level of the resulting signal based on the counter in the
FPGA. On the other hand, the sinusoidal reference command for the current controller
is obtained by triggering the sinusoidal table in the FPGA, via the zero crossing detecting circuit. And, this sinusoidal reference command, together with the traditional
average current control method, generates a suitable control effort to drive the power
switch such that the output voltage is controlled at a desired value and at the same time
the input current follows the input voltage as tightly as possible. In this thesis, some
simulated results, based on Matlab/Simulink combined with Active-HDL, are provided
to demonstrate the feasibility of the proposed fully-digitalized PFC rectifier. Finally,
some experimental results, based on the FPGA used as a control kernel, are offered to
verified its effectiveness.

中文摘要.............................................................................................................i
英文摘要.............................................................................................................ii
誌謝.....................................................................................................................iv
目錄.................................................................................................................... v
表目錄.................................................................................................................ix
圖目錄.................................................................................................................x
第一章 緒論.......................................................................................................1
1.1 研究動機及目的................................................................................1
1.2 研究方法............................................................................................8
1.3 論文內容架構....................................................................................9
第二章 轉換器動作原理分析...........................................................................10
2.1 前言....................................................................................................10
2.2 升壓型轉換器之基本操作原理.........................................................10
2.2.1 升壓型轉換器於連續導通模式下之穩態分析........................13
2.2.2 升壓型轉換器之邊界模式條件................................................14
2.2.3 升壓型轉換器於不連續導通模式下之穩態分析....................15
2.2.4 具平均電流模式控制之升壓型轉換器....................................18
第三章 功率因數及其控制方法之簡介............................................................19
3.1 功率因數簡介....................................................................................19
3.2 功率因數修正之控制方法................................................................21
3.2.1 主動式功率因數修正之方法....................................................22
第四章 無ADC 取樣技術.................................................................................25
vi
4.1 無ADC 取樣技術..............................................................................25
4.2 無ADC 之輸出電壓取樣..................................................................25
4.3 無ADC 之輸入電感電流取樣..........................................................30
第五章 硬體電路設計.......................................................................................34
5.1 系統規格............................................................................................34
5.2 系統架構............................................................................................35
5.3 系統研製............................................................................................36
5.3.1 輸入電感設計...........................................................................36
5.3.2 輸出電容設計...........................................................................39
5.3.3 功率開關之選配.......................................................................40
5.3.4 輸出二極體之選配...................................................................41
5.3.5 閘極驅動電路設計...................................................................42
5.4 無ADC 之電壓取樣電路..................................................................43
5.4.1 輸出電壓回授電路之設計.......................................................44
5.4.2 三角波產生器之設計...............................................................45
5.4.3 加法器與比較器之設計...........................................................46
5.5 無ADC 之電流取樣電路..................................................................47
5.5.1 鋸齒波產生器之設計...............................................................47
5.5.2 輸入電流回授電路之設計.......................................................49
5.6 零點偵測電路....................................................................................51
5.7 FPGA 電路板介紹..............................................................................52
第六章 軟體規劃及程式設計流程....................................................................53
6.1 VHDL 程式簡介.................................................................................53
6.1.1 Library 宣告區...........................................................................54
6.1.2 Use 宣告區.................................................................................54
vii
6.1.3 Entity 宣告區.............................................................................54
6.1.4 Architecture 宣告區...................................................................55
6.1.5 物件模式與型別.......................................................................55
6.2 程式動作流程....................................................................................56
6.2.1 無ADC 之輸出電壓取樣計數.................................................58
6.2.2 無ADC 之輸入電流取樣計數.................................................59
6.2.3 零點偵測模組...........................................................................60
6.2.4 用於輸出電壓之無ADC 取樣的三角波控制模組..................61
6.2.5 用於輸入電流之無ADC 取樣的鋸齒波控制模組..................61
6.2.6 數位控制器及DPWM 模組.....................................................62
第七章 模擬與實作波形...................................................................................64
7.1 電路模擬結果....................................................................................64
7.2 實驗波形............................................................................................65
7.2.1 於輸入電壓90V 之波形量測...................................................67
7.2.2 於輸入電壓110V 之波形量測.................................................71
7.2.3 於輸入電壓130V 之波形量測.................................................75
7.2.4 無ADC 輸出電壓取樣電路之波形量測..................................79
7.2.5 無ADC 電流取樣電路之波形量測.........................................79
7.2.6 零點偵測電路之波形量測.......................................................81
7.2.7 輸出電壓漣波之波形量測.......................................................82
7.2.8 負載變動...................................................................................84
7.2.8.1 於輸入電壓90V下之負載變動的量測波形.................85
7.2.8.2 於輸入電壓110V下之負載變動的量測波形...............88
7.2.8.3 於輸入電壓130V下之負載變動的量測波形...............91
7.2.9 實驗總結...................................................................................94
viii
7.2.10 與文獻[61]實驗結果之比較...................................................97
第八章 結論與未來展望...................................................................................100
8.1 結論....................................................................................................100
8.2 未來展望............................................................................................100
參考文獻.............................................................................................................102
符號彙編.............................................................................................................110
附錄A..................................................................................................................115

[1]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 3rd ed., Wiley, 2003.
[2]Robert W. Erickson and Dragn Maksimovic, Fundamentals of Power Electronics, 2nd ed., SCI-TECH, 1999.
[3]Sanjeev Singh and Bhim Singh, “Voltage controlled PFC SEPIC converter fed PMBLDCM drive for an air-conditioner,” IEEE PEDES’10, pp. 1-6, 2010.
[4]Ranjan K. Gupta, Hariharan Krishnaswami and Ned Mohan, “A unified analysis of CCM boost PFC for various current control strategies,” IEEE PEDES’06, pp. 1-5, 2006.
[5]Kazunori Nishimura, Nobuhiro Yokoyama, Katsuya Hirachi, Soon-Kurl Kwon and Mutsuo Nakaoka, “Dual high-frequency chopper-based single stage PFC converter with output DC high quality,” IEEE IECON’09, pp. 413-419, 2009.
[6]Laszlo Huber, Liu Gang and Milan M. Jovanovic, “Design-oriented analysis and performance evaluation of buck PFC front end,” IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 85-94, 2010.
[7]Jun Imaoka, Yuki Ishikura, Takahiro Kawashima and Masayoshi Yamamoto, “Optimal design method for interleaved single-phase PFC converter with coupled inductor,” IEEE ECCE’11, pp. 1807-1812, 2011.
[8]Yungtaek Jang and Milan M. Jovanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1394-1401, 2007.
[9]Yungtaek Jang and Milan M. Jovanovic, “Interleaved PFC boost converter with intrinsic voltage-doubler characteristic,” IEEE PESC, pp. 1-7, 2006.
[10]X. Wu, J. Yang, J. Zhang and Z. Qian, “Variable On-Time (VOT) controlled critical conduction mode buck PFC converter for high input AC/DC HB-LED lighting application,” IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-11, 2011.
[11]Jianyou Yang, Junming Zhang, Xinke Wu, Zhaoming Qian and Ming Xu, “Performance comparison between buck and boost CRM PFC converter,” IEEE COMPEL’10, pp. 1-5, 2010.
[12]Xiaojun Xu and Alex Q. Huang, “A novel closed loop interleaving strategy of multiphase critical mode boost PFC converters,” IEEE APEC’08, pp. 1033-1038, 2008.
[13]Jindong Zhang, Jianwen Shao, Peng Xu, Fred C. Lee and Milan M. Jovanovic, “Evaluation of input current in the critical mode boost PFC converter for distributed power systems,” IEEE APEC’01, vol. 1, pp. 130-136, 2001.
[14]Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “A new duty cycle parallel control method and FPGA implementation for AC-DC converters with power factor correction (PFC),” IEEE APEC’05, vol. 2, pp. 805-811, 2005.
[15]Mohammadreza Abedi, Byeong-Mun Song and Brian Ernzen, “Optimum tracking of nonlinear-model predictive control for boost based PFC rectifier,” IEEE SSST’11, pp. 87-91, 2011.
[16]Wanfeng Zhang, Guang Feng, Yn Fei Liu and Bin Wu, “Analysis and implementation of a new PFC digital control method,” IEEE PESC’03, vol. 1, pp. 335-340, 2003.
[17]Fei Zhang, Jianping Xu, Ping Yang and Zhangyong Chen, “Single-phase two-switch PCCM buck-boost PFC converter with fast dynamic response for universal input voltage,” IEEE ECCE’11, pp. 205-209, 2011.
[18]Fei Zhang and Jianping Xu, “A novel PCCM boost PFC converter with fast dynamic response,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4207-4216, 2010.
[19]Moahmed Orabi and Tamotsu Ninomiya, “A unified design of single-stage and two-stage PFC converter,” IEEE PESC’03, vol. 4, pp. 1720-1725, 2003.
[20]Moahmed Orabi and Tamotsu Ninomiya, “Bifurcation analysis of pre-regulator PFC boost converter,” IEEE INTELEC’03, pp. 559-564, 2003.
[21]Moahmed Orabi and Tamotsu Ninomiya, “Identification and analysis of nonlinear phenomena in boost PFC converter using bifurcation maps,” IEEE INTELEC’04, pp. 705-712, 2004.
[22]Yun-Sung Kim, Byoung-Kuk Lee and Julian W. Lee, “Topology characteristics analysis and performance comparison for optimal design of high efficiency PFC circuit for telecom,” IEEE INTELEC’11, pp. 1-7, 2011.
[23]A. Borges, F. R. S. Vincenzi, L. C. Gomes de Freitas, M. A. A. Freitas, E. R. Fernandes, J. B. Vieira Jr. and L. C. deFreitas, “Lossless commutated boost converter applied as a PFC stage for uninterruptible power supply system without battery charger,” IEEE PESC’07, pp. 231-237, 2007.
[24]Wang Fa-Qiangҙ, Ma Xi-Kui and Zhang Hao, “Effect of the input filter on the low frequency stability of a boost PFC converter: Theoretical analysis, simulation and experiment,” IEEE ICECC’11, pp. 4264-4270, 2011.
[25]Bo Yuan, Gold Yin, Jiangang Bao, Alpha J. Zhang and Xu Yang, “Hybrid PFC circuit for wide load range high efficiency server power supply unit,” IEEE INTELEC’10, pp. 1-4, 2010.
[26]Mohamed Orabi and Abdelali El Aroudi, “A unified practical approach to analyze the stability of the pre-regulator and complete two-stage PFC power supplies under average-current-mode control,” IEEE ECCE’10, pp. 2607-2612, 2010.
[27]T.-F. Wu, C.-L. Shen, J.-R. Tsai and H.-S. Nien, “A PFC control circuit for accommodating line-voltage distortion and to achieve high power factor and reduce harmonic components,” IEEE PESC’05, pp. 2327-2332, 2005.
[28]Frank Schafmeister, Xudong Wang, Tobias Grote and Peter Ide, “Scalable multi phase interleaved boundary mode PFC concept enabling energy-and cost efficient PSUs in the kW-range,” IEEE ISIE’10, pp. 3831-3835, 2010.
[29]Manish Bhardwaj, Shamim Choudhury and Bilal Akin, “Digital control of two phase interleaved PFC and motor drive using MCU with CLA,” IEEE APEC’11, pp. 384-389, 2011.
[30]Chuanyun Wang, Ming Xu, Fred C. Lee and Zheng Luo, “Light load efficiency improvement for multi-channel PFC,” IEEE PESC’08, vol. 4, pp. 4080-4085, 2008.
[31]Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, 2004.
[32]D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche and J. A. A. Melkebeek, “A sampling algorithm for digitally controlled boost PFC converter,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 649-657, 2004.
[33]A. Olayiwola, B. Sock, M. R. Zolghadri, A. Homaifar, M. Walters and C. Doss, “Digital controller for a boost PFC converter in continuous conduction mode,” IEEE ICIEA’06, pp. 1-8, 2006.
[34]Manjing Xie, Bing Lu, Wei Dong and F. C. Lee, “Novel current-loop feed-forward compensation for boost PFC converter,” IEEE APEC’04, vol. 2, pp. 750-755, 2004.
[35]Min Chen and Jian Sun, “Feedforward current control of boost single-phase PFC converters,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 338-348, 2006.
[36]W. Zhang, G. Feng, Y.-F. Liu and B. Wu, “DSP implementation of predictive control strategy for power factor correction (PFC),” IEEE APEC’04, vol. 1, pp. 67-73, 2004.
[37]Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “New digital control method for power factor correction,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 987-990, 2006.
[38]Sangsun Kim and P. N. Enjeti, “Control of multiple single-phase PFC modules with a single low-cost DSP,” IEEE Transactions on Industrial Electronics, vol. 39, no. 5, pp. 1379- 1385, 2003.
[39]D. He and R. M. Nelms, “Peak current-mode control for a boost converter using an 8-bit microcontroller,” IEEE PESC’03, vol. 2, pp. 938-943, 2003.
[40]D. He and R. M. Nelms, “Current-mode control of a DC-DC converter using a microcontroller: implement issues,” IEEE IPEMC’04, vol. 2, pp. 538-543, 2004.
[41]C. Kranz, “Complete digital control method for PWM DC-DC boost converter,” IEEE PESC’03, pp. 951-956, 2003.
[42]A. Fratta, G.. Griffero, P. Guglielmi, S. Nieddu and G. M. Pellegrino, “Application of new FPGA-based top-performance digital control techniques to PWM power converters,” IEEE IECON’04, pp. 810-815, 2004.
[43]M. Milanovic, M. Truntic and P. Slibar, “FPGA implementation of digital controller for DC-DC buck converter,” Fifth International Workshop on System-on-Chip Real-Time Applications, pp. 439-443, 2005.
[44]X. Lin-Shi, B. Allard, D. Tournier, J. M. Retif and F. Morel, “Digital control strategies for switch-mode power supply,” IEEE IECON’06, pp. 79-84, 2006.
[45]V. Yousefzadeh and D. Maksimovic, “Sensorless optimization of dead times in DC-DC converters with synchronous rectifiers,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 994-1002, 2006.
[46]Y. F. Chan, M. Moallem and W. Wang, “Design and implementation of modular FPGA-based PID controllers,” IEEE Transactions on Power Electronics, vol. 54, no. 4, pp. 1898-1906, 2007.
[47]C. H. Chen, W. H. Chang, D. Chen, L. P. Tai and C. C. Wang, “Modeling of digitally-controlled voltage-mode DC-DC converters,” IEEE IECON’07, pp. 2005-2009, 2007.
[48]D. Trevisan, S. Saggini and P. Mattavelli, “Hysteresis-based mixed-signal voltage-mode control for DC-DC converters,” IEEE PESC’07, pp. 2664-2670, 2007.
[49]L. T. Jakobsen and M. A. E. Andersen, “Digitally controlled point of load converter with very fast transient response,” European Conference on Power Electronics and Applications, pp. 1-10, 2007.
[50]L. A. Barragan, I. Urriza, D. Navarro, J. I. Artigas, J. Acero and J. M. Burdio, “Comparing simulation alternatives of FPGA-based controllers for switching converters,” IEEE ISIE’07, pp. 419-424, 2007.
[51]M. Castilla, L. G. D. Vincuna, J. M. Guerrero, J. Miret and N. Berbel, “Simple low-cost hysteretic controller for single-phase synchronous buck converters,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1232-1241, 2007.
[52]S. Saggini, D. Trevisan, P. Mattavelli and M. Ghioni, “Synchronous-asynchronous digital voltage-mode control for DC-DC converters,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1261-1268, 2007.
[53]G. Feng, E. Meyer and Y. F. Liu, “A new digital control algorithm to achieve optimal dynamic performance in DC to DC converters,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1489-1498, 2007.
[54]Wanfeng Zhang,Yan-Fei Liu and Bin Wu, “A new duty cycle control strategy for power factor correction and FPGA implementation,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1745-1753, 2006.
[55]C. Attaianese, V. Nardi, F. Parillo and G. Tomasso, “Dual boost high performances power factor correction (PFC),” IEEE APEC’08, pp. 1027-1032, 2008.
[56]Andre L. P. Alcalde, Felipe M. D’aquino, Marcio S. Ortmann, Hari B. Mohr and Samir A. Mussa, “FPGA-based control of a PFC converter,” IEEE ISIE’07, pp. 959-963, 2007.
[57]Angel de Castro, Pablo Zumel, Oscar Garcia, Teresa Riesgo and Javier Uceda, “Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 334-343, 2003.
[58] 陳瑞熙、高堅志、鄭明哲,微電腦介面技術與實作,台北:碁峰資訊股份有限公司,1992。
[59]Angel V. Peterchev and Seth R. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, 2003.
[60]Sun Yi, Li Jian, Ming Xu and F. C. Lee, “Novel digital multi-phase duty cycle modulation methods for voltage regulators,” IEEE APEC’08, pp. 1099-1105, 2008.
[61] K. I. Hwu, H. W. Chen and Y. T. Yau, “Fully-digitalized implementation of PFC rectifier in CCM without ADC,” IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4021-4029, 2012.
[62] K. I. Hwu and Y. T. Yau, “Feedforward compensation for one-comparator counter-based PWM control based on FPGA,” IEEE IECON’07, pp. 2015-2019, 2007.
[63] K. I. Hwu and Y. T. Yau, “Improvement of one-comparator counter-based PWM control by applying a sawtoothed wave injection method,” IEEE APEC’07, pp. 478-481, 2007.
[64] K. I. Hwu and Y. T. Yau, “Applying an FPGA-counter-based control strategy
to multiple SR outputs of a forward converter,” IEEE PESC’06, pp. 1-4, 2006.
[65] http://www.toshiba.com/taec/components2/Datasheet_Sync/76/12095.pdf
[66] http://www.datasheetcatalog.org/datasheet/philips/BYC8-600_5.pdf
[67] http://www.learn-c.com/tc4429.pdf


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊