跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林聖展
研究生(外文):Sheng Chan Lin
論文名稱:應用於LED驅動之具新型同步整流之雙晶多組輸出返馳式轉換器
論文名稱(外文):Applying Novel Synchronously-Rectified Two-Transistor Mutiple-Output Flyback Converter to LED Drive
指導教授:胡國英
指導教授(外文):Kuo-Ing Hwu
口試委員:謝振中俞齊山李永勳
口試委員(外文):Jenn-Jong ShiehChi-Shan YuYuang-Shung Lee
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:130
中文關鍵詞:重疊式同步整流技術雙晶多組輸出返馳式轉換器零電壓切換非隔離式升壓型轉換器電壓調整率
外文關鍵詞:Synchronous Rectifiers StackedTwo-Transistor Multi-Output Flyback Converter Zero Voltage SwitchingNon-Isolated Boost ConverterCross Regulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係研製一具新型同步整流之雙晶多組輸出返馳式轉換器,利用二次側之特殊同步整流電路,將較高輸出電壓沒消耗在輸出負載之功率,經由疊加式同步整流技術回送至較低輸出電壓上,使得多組輸出之各組電壓,只與各繞組之圈數成正比,不因各負載在彼此輕重載交錯變動下,產生電壓準位偏移過多而造成電壓調整率(Cross Regulation)過大之問題,同時在一次側主功率開關兼具有零電壓切換(Zero Voltage Switching, ZVS)。並藉由應用在LED TV之電源供應器的實驗,利用所提之架構,供給多組輸出負載與LED負載,得以免去傳統應用上還特別加入專門為了控制LED電流需求之非隔離式升壓轉換器,來提升LED TV之電源供應器的整體效率與節省非隔離式升壓轉換器之用料成本,藉此來驗證所提架構之可行性與有效性。

In this thesis, a novel synchronously-rectified two-transistor multiple-output Flyback converter is presented, which is applied to driving the LED. Based on the proposed synchronous rectifiers stacked with each other on the primary side, the power, which is not dissipated in the load at the high output voltage terminal, will be pumped to the load at the low output voltage terminal, so as to make output voltages proportional to individual turns ratios regardless of variations in load. By doing so, the cross regulation between output voltages will be reduced as minimum as possible. Moreover, the main switch on the primary side will possess zero voltage switching (ZVS). By applying this converter to feeding the multiple loads of the LED TV, one non-isolated boost converter, traditionally required to control the LED current, will be removed such that the required components will be reduced and the efficiency of the power supplies for the LED TV will be upgraded. By means of some experimental results, the effectiveness of the proposed topology can be verified.

中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 6
1.3 論文內容架構 7
第二章 返馳式轉換器之工作原理介紹 8
2.1 前言 8
2.2 返馳式轉換器操作於邊界導通模式下之穩態分析 10
2.3 返馳式轉換器CCM/DCM之邊界導通模式之相關數學推導 16
2.4 雙組輸出返馳式轉換器之架構、工作原理說明 18
第三章 具新型同步整流之雙晶多組輸出返馳式轉換器之電路分析 27
3.1 前言 27
3.2 具新型同步整流之雙晶多組輸出返馳式轉換器之電路架構及其基本工作原理 27
3.3 具新型同步整流之雙晶多組輸出返馳式轉換器之電壓調整率調節動作原理分析 34

第四章 硬體電路設計 45
4.1 系統架構 45
4.2 系統規格 46
4.3 系統元件參數之設計及選配 48
4.3.1 PFC電感之設計 49
4.3.2 PFC主功率開關及二極體之選配 55
4.3.3 PFC輸出電容之設計 60
4.3.4 雙晶雙組輸出返馳式轉換器之耦合電感的設計 60
4.3.5 雙晶返馳式轉換器一次側主功率開關之選配 64
4.3.6 雙晶返馳式轉換器二次側同步整流開關之選配 65
4.3.7 雙晶返馳式轉換器輸出電容之選配 67
4.3.8 兩相LED電路之主開關與電流檢知電阻之選配 68
4.3.9 電壓取樣電路之分壓電阻之選配 70
第五章 實驗波形 71
5.1 前言 71
5.2 疊加式整流雙組輸出的雙晶返馳式轉換器之量測 72
5.2.1 疊加式整流二極體雙組輸出雙晶返馳式轉換器之量測 72
5.2.2 疊加式同步整流雙組輸出雙晶返馳式轉換器之量測 77
5.2.3 疊加式同步整流及整流二極體雙組輸出雙晶返馳式轉換器之小結 85
5.2.4 疊加式同步整流及整流二極體之負載交錯變動的輸出電壓之量測 85
5.2.5 疊加式整流雙組輸出的雙晶返馳式轉換器之實驗小結 92
5.3 疊加式同步整流雙組輸出的雙晶返馳式轉換器應用於LED TV之量測 92
5.3.1 輸入電壓變動對12V輸出滿載及LED調光全開的量測 92
5.3.2 輸出12V負載改變之穩態電壓及LED調光電流之量測 97
5.3.3 疊加式同步整流雙組輸出的雙晶返馳式應用於LED TV之實驗小結 98
5.4 CRM PFC之量測 99
5.4.1 於滿載下之PFC主功率開關及整流二極體之實驗波形 99
5.4.2 滿載下PFC輸出電容的電壓漣波之實驗波形 103
5.4.3 滿載下電源輸入端之實驗波形 107
5.4.4 輸入電源的諧波成分的實驗量測 111
5.5 效率之量測 113
第六章 結論與未來展望 116
6.1 結論 116
6.2 未來展望 116
參考文獻 117
符號彙編 124



[1]B. Sharifipour, P. Cacciola and J. Maddox, “Designing a 1200 watt multiple output modular power system with high power utilization for the workstation environment,” IEEE APEC’89, pp. 439-444, 1989.
[2]Z. Pan, F. Zhang and F. Z. Peng, “Power losses and efficiency analysis of multilevel DC-DC converters,” IEEE APEC’05, pp. 1393-1398, 2005.
[3]F. Zhang, F. Z. Peng and Z. Qian, “Study of Multilevel Converters in DC-DC Application,” IEEE PESC’04, pp. 1702-1706, 2004.
[4]Faisal H. Khan and Leon M. Tolbert, “Multiple-load-source integration in a multilevel modular capacitor-clamped DC–DC converter featuring fault tolerant capability,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 14-24, 2009.
[5] F. H. Khan and L. M. Tolbert, “A multilevel modular capacitor clamped DC-DC converter,” IEEE IAS Annual Meeting’06, vol. 2, pp. 966-973, 2006.
[6]Faisal H. Khan and Leon M. Tolbert, “Generating isolated outputs in a multilevel modular capacitor clamped dc-dc converter (MMCCC) for hybrid electric and fuel cell vehicles,” IEEE PESC’08, pp. 967-973, 2008.
[7]Nan Zhanghe, Xu Ming, Sun Julu, Han Wenchang and Yao Yuan, “Novel DC-DC architecture for high efficiency SMPS with multiple outputs,” IEEE ECCE’10, pp. 3719-3726, 2010.
[8]Y. Li., C. Seim and J. Zheng, “Adaptive multi-mode digital control improving light load efficiency in switching power converters,” U.S. Patent 61141059, 2008.
[9] J.-H. Jung and S. Ahmed, “Flyback converter with novel active clamp control and secondary side post regulator for low standby power consumption under high-efficiency operation,” IEEE Transactions on Power Electronics, vol. 4, no. 9, pp. 1058-1067, 2011.
[10]Li-jun Hang, Yi-lei Gu, Zheng-yu Lu, Zhao-ming Qian and De-hong Xu, “Magamp post regulation for LLC series resonant converter with multi-output," IEEE IECON’05, pp. 5, 2005.
[11]R. L. Steigerwald and J. S. Glaser, “A soft-switched secondary-side post regulator,” IEEE APEC’04, vol. 2, pp. 1055-1059, 2004.
[12] Yong Li and Jerry Zheng, “A low-cost adaptive multi-mode digital control solution maximizing AC/DC power supply efficiency,” IEEE APEC’10, pp. 349-354, 2010.
[13]M. Day and J. Naik, “A practical guide to low power efficiency measurement,” Network systems design line, 2007.
[14]E. Kok, “Latest AC/DC integrated power IC for low standby medium power applications,” END Asia, Feature, 2009.
[15]Y. Li. and J. Zheng, “Improved valley-mode switching schemes for switching power converters,” U.S. Patent 61141600, 2008.
[16]Y. Li and J. Zheng, “Controller for switching power converter driving BJT based on primary side adaptive digital control,” U.S. Patent 61140605, 2008.
[17]M. Nakaoka, B. Saha and Sang Pil Mun, “Pulse width and pulse frequency modulation pattern controlled active clamp ZVS inverter link AC-DC power converter utility AC side active power filtering function for consumer magnetron driver,” IEEE IECON’07, pp. 1968-1971, 2007.
[18]H. Huang, “Maximizing AC/DC efficiency from full-load to no-load,” Power Management Design Line, 2007.
[19]Roberts W. Erickson and Dragan Maksinmovic, Fundamentals of power electronics, 2nd ed., Norwell, MA;Kluwer, 2001.
[20]Y. Zhu, T. Peng, R. Fei and S. Fang, “Method and system for pulse frequency modulated switching mode power supplies,” U.S. Patent 60943498, 2007.
[21]Xiaogao Xie, Junming Zhang, Chen Zhao and Zhaoming Qian, “An improved current-driven method for synchronous flyback AC/DC converters,” IEEE INTELEC’06, pp. 1-5, 2006.
[22]Sang Hee Kang, Dragan Maksimovic and Isaac Cohen, “On-line efficiency optimization in flyback dc-dc converters over wide ranges of operating conditions,” IEEE APEC’11, pp. 1417-1424, 2011.
[23]J. Harper, “Using quasi-resonant and resonant converters,” Power Management Design Line, 2008.
[24]Eric Janssen, “Green chip SR: synchronous rectifier controller IC,” IEEE ISIE’07, pp. 2319-2325, 2007.
[25]Foauzi Tourkhani and Daniel Vallee, “A saturable transformer based technique to drive a synchronous rectifier,” IEEE ISIE’06, pp. 876-881, 2006.
[26]Ehsan Adib and Hosein Farzanehfard, “Zero-voltage-transition PWM converters with synchronous rectifier,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 105-110, 2010.
[27]Jian-Min Wang, Sen-Tung Wu and Gwan-Chi Jane, “A novel control scheme of synchronous buck converter for ZVS in light-load condition,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3265- 3273, 2011.
[28]W. Langeslag and R. Pagano, “VLSI design and application of a high voltage-compatible SOC–ASIC in bipolar CMOS/DMOS technology for AC–DC rectifiers,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2626-2641, 2007.
[29]J. Xiao, V. Peterchev and J. Zhang, “A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE Solid-State Circuits Society, vol. 39, no. 12, 2004.
[30]M. Ishitobi, S. Moisseev and L. Gamage, “Pulse width and pulse frequency modulation pattern controlled ZVS inverter type AC-DC power converter with lowered utility AC grid sideharmonic current components for magnetron drive,” IEEE PSEC’02, pp. 2062-2067, 2002.
[31]Jong-Jae Lee, Jung-Min Kwon, Eung-Ho Kim, Woo-Young Choi and Bong-Hwan Kwon, “Single-stage single-switch PFC flyback converter using a synchronous rectifier,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1352-1365, 2008.
[32]Po-Yuan Chen, Masahito Jinno and Yu-Min Shie, “Research on the reverse conduction of synchronous rectifiers,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1570-1575, 2008.
[33] Li. Hover, Hongjian Gan and Jianping Ying, “High active mode efficiency switching mode power supply,” IEEE APEC’08, pp. 715-721, 2008.
[34]S.-A Liang and C.-P. Wu, “A new and simple structure of PC power supply with low cost and high efficiency to meet 80 plus requirement,” IEEE APEC’08, pp. 1347-1352, 2008.
[35] S.-A Liang, “A high power and high efficiency PC power supply topology with low cost design to meet 80 plus bronze requirements,” IEEE ICIT’09, pp. 1-6, 2009.
[36] 資料來源:http://www.pida.org.tw/optolink/optolink_pdf
[37] 資料來源:http://www.moneydj.com/KMDJ/report/reportview康和知識庫
[38]億光 data sheet, Model No: HP-AX08EL-GT01H-P01-4556-Y-K42
[39]Sang-Ho Cho, Chang-Seop Kim and Sang-Kyoo Han, “High-efficiency and low-cost tightly-regulated dual-output LLC resonant converter,” IEEE Transactions on Power Electronics, vol. 99, no. 1, pp. 0278-0046, 2011.
[40]Sang-Ho Cho, Sang-Hyun Lee, Sung-Soo Hong, Sang-Kyoo Han and Dong-Sung Oh, “High-accuracy and cost-effective current-balanced multi channel LED backlight driver using single-transformer,” IEEE Power Electronics and ECCE Asia (ICPE & ECCE)’11, pp. 520-527, 2011.
[41]Yun-Hao Chang, Yu-Jen Chen, Ying-Chun Chuang and Chin-Sien Moo, “Driving circuit for high-brightness LED lamps,” IPEC’11, pp. 403-407, 2011.
[42]L. Y. Pan, S. C. Chang, M. Y. Liao and Y. T Lin, “The future development of global LCD TV industry,” IEEE PICMET’07, pp. 1818-1821, 2007.
[43]F. Xiaoyun, L. Xiaojian and W. Yan, “Research and analysis of the design development and perspective technology for LED lighting products,” IEEE CAID & CD’09, pp. 1330-1334, 2009.
[44]M. Doshi and R. Zane, “Digital architecture for driving large LED arrays with dynamic bus voltage regulation and phase shifted PWM,” IEEE APEC’07, pp. 287-293, 2007.
[45]Heinz Vander Broect, Georg Sauerlander and Matthias Went, “Power driver topologies and control schemes for LEDs,” IEEE APEC’07, pp. 1319-1325, 2007.
[46]Baddela, S. M. and Zinger, D. S, “Parallel connected LEDs operated at high to improve current sharing,” IEEE IAS’04, pp. 1677-1681, 2004.
[47]S. T. S. Lee, S. Y. R. Hui and H. S.-H Chung, “Practical evaluation of dimming control methods for electronic ballasts,” IEEE Transaction on Power Electronics, vol. 21, no 6, pp. 1769-1775, 2006.
[48]S. W. Lee, D. Y. Ko, D. Y. Huh and Y. I. Yoo, “Simplified control technique for LCD backlight inverter systems using the mixed dimming method,” IEEE APEC’01, pp. 447-453, 2001.
[49]D. Gacio, J. M. Alonso, L. Campa, M. Crespo and M. Rico-Secades, “High frequency PWM dimming technique for high power factor converters in LED lighting,” IEEE APEC’10, pp. 743-749, 2010.
[50]Prathyusha Narra and Donald S. Zinger, “An effective LED dimming approach,” IEEE IAS’04, pp. 1671-1676, 2004.
[51]J. Garcia, A. J. calleja, E.L. Corominas, D. Gacio and J. Ribas, “Electronic driver without electrolynic capacitor for dimming high brightness LEDs,” IEEE IECON’09, pp. 3518-3523, 2009.
[52]Jorge Garcia, Antonio J. Calleja, Emilio Lopez Corominas, David Gacio Vaquero and Lidia Campa, “Interleaved buck converter for fast PWM dimming of high-brightness LEDs,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2627-2636, 2011.
[53]Jae-Kuk Kim, Seong-Wook Choi and Gun-Woo Moon, “Zero-voltage switching postregulation scheme for multioutput forward converter with synchronous switches”, IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2378-2386, 2011.

[54]Abraham I. Pressman, Switching Power Supply Design, 2nd ed., McGraw-Hill Companies, 1998.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top