跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈在
研究生(外文):Ying-Tsai Chen
論文名稱:大型電廠接地故障對其附設太陽光電發電系統之影響研究
論文名稱(外文):Affections of Large Plant Ground Faults on the Affiliated Solar Photovoltaic Energy Systems
指導教授:周至如
口試委員:曾國雄何金滿蕭瑛東
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:146
中文關鍵詞:太陽光電系統生水池開關場接地故障地電位昇
外文關鍵詞:Solar Photovoltaic Energy SystemRow-water poolSwitchyardGround FaultGround Potential Rise (GPR)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台電公司正積極推動綠色能源之發展,紛紛於各大型電廠生水池等處附設太陽光電(Photovoltaic,簡稱PV)發電系統,此將衍生不少問題,其中大型電廠發生接地故障時,對其附設之太陽光電發電系統之影響是亟待探討的問題,主要原因是大型電廠電壓高且其系統短路容量很大,一旦開關場發生接地故障時,對太陽光電發電系統造成嚴重威脅,包括對其所屬之人員、系統與設備之傷害,此均與大型電廠本身及太陽光電發電系統之接地系統有關。本研究以一個典型的大型電廠為案例,分別探討大型電廠發生接地故障時,各接地系統之電磁特性,包括地電位昇、地電位差及金屬間接觸電壓,並藉此評估對PV之人員與設備影響。文中首先應用電磁暫態分析程式之改良程式建構模型以分析不同故障位置之接地故障,經由分析結果可獲得故障電流及注入各接地網不同位置的電流,包括故障點、各電壓等級匯流排、太陽光電發電系統各Inverter等處之電流,藉由前述分析各項穩態及暫態電磁特性。最後根據這些分析結果以評估其影響,包括對人員及設備的影響。本研究相關分析所得之數據可作為進一步探討大型電廠內太陽光電系統防護措施之參考。

Taiwan Power Company (TPC) is developing the green-energy generation and installing the solar photovoltaic energy system (PV system) continuously above the row-water pool or other place in the large plant. However, this also produces some issues, in which the affections of ground fault in the large plant switchyard on the PV. System is imperative to be studied. During ground fault, the operation of PV system will be threatened seriously due to that large plant have high voltage level and large short circuit capacity. The PV system associated personnel will suffer damage from ground fault which is relative to the grounding systems of the large plant itself and PV system.
In this thesis, the ground fault in a typical large plant is surveyed, in which the electromagnetic characteristics of each grounding system are analyzed, which include the analysis of ground potential rise (GPR), ground potential difference (GPD) and metal-to-metal touch voltage. Based on the analysis results,The affections on PV system and its personnel and equipment are evaluated. Firstly, the circuit model of the system is constructed by alternative transient program (ATP) of electromagnetic transient program(EMTP). Then, the fault currents at different locations are simulated, and the characteristics of fault currents at each grounding system can be obtained. The important location include fault point, buses of various voltage levels and Inverter of PV system. Based on the simulation results, the electromagnetic characteristics with respect to steady state and transient state can be analyzed. Finally, according to the above analysis results, the evaluations can be proposed in terms of effects on personnel and equipment. The results obtained in the paper are useful references for protective strategies PV system in the large plant.


摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究背景與目的 1
1.2 相關文獻研究概況回顧 2
1.3 研究內容概述 3
第二章 系統架構及接地故障問題描述 5
2.1 系統架構介紹 5
2.1.1 電力系統架構概述 5
2.1.2 電廠太陽光電系統之組成 6
2.1.3 電廠附設太陽光電設備保護方式 13
2.1.4 電力電纜構造及材質 15
2.2 接地系統架構 20
2.3 問題描述 22
第三章 模型建立及參數設定 24
3.1 研究方法及流程簡介 24
3.2 供電系統模型之建立及參數設定 25
3.2.1 電磁暫態分析程式(ATP)介紹 25
3.2.2 345kV電源模型與參數設定 27
3.2.3 主變壓器及匯流排模型與其參數設定 29
3.2.4 345kV及161kV電纜建構模型 32
3.2.5 161kV系統模型及參數設定 36
3.2.6 161kV地下電纜與其參數設定 36
3.2.7 配電變壓器及線路避雷器模型與參數設定 39
3.2.8 高壓電纜及高壓用戶負載模型與參數設定 41
3.2.9 供電系統模型之完整建立 42
第四章 電廠附設太陽光電系統接地故障特性分析 45
4.1 前言 45
4.2 分析案例條件說明 45
4.3 太陽光電系統間地網互連接地故障分析 46
4.3.1 345kV GIS匯流排接地故障 46
4.3.1.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連(S2 open) 46
4.3.1.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 49
4.3.1.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 52
4.3.1.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 55
4.3.2 161kV GIS匯流排接地故障 58
4.3.2.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連(S2 open) 58
4.3.2.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 61
4.3.2.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 64
4.3.2.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 67
4.3.3 11.4kV GIS匯流排接地故障 70
4.3.3.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連S2 open 70
4.3.3.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 73
4.3.3.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 76
4.3.3.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 79
4.3.4 檢討與比較 82
4.4 太陽光電系統間地網不互連接地故障分析 87
4.4.1 345kV GIS匯流排接地故障 87
4.4.1.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連S2 open 87
4.4.1.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 90
4.4.1.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 93
4.4.1.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 96
4.4.2 161kV GIS匯流排接地故障 99
4.4.2.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連S2 open 99
4.4.2.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 102
4.4.2.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 105
4.4.2.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 108
4.4.3 11.4kV GIS匯流排接地故障 111
4.4.3.1 #1 PV地網與電廠地網互連(S1 close)、#2 PV地網與電廠地網不互連(S2 open) 111
4.4.3.2 #1 PV、#2 PV地網與電廠地網均互連(S1、S2 close) 114
4.4.3.3 #2 PV地網與電廠地網互連(S2 close)、#1 PV地網與電廠地網不互連(S1 open) 117
4.4.3.4 #1 PV、#2 PV地網與電廠地網均不互連(S1、S2 open) 120
4.4.4 檢討與比較 123
4.5 綜合分析結果討論 128
第五章 影響評估 134
5.1 前言 134
5.2 人員安全評估 134
5.3 一般設備風險評估 138
第六章 結論及未來研究方向 141
6.1 結論 141
6.2 未來研究方向 142
參考文獻 143


[1]Kosztaluk, R., Loboda, M., Mukhedkar, D. "Experimental study of transient ground impedances," IEEE Transactions on Power Apparatus and Systems PAS-100 (11),1981, pp.4653-4660.
[2]Thapar, B.; Gerez, V.; Balakrishnan, A.; Blank, D.A. "Substation ground grids intertied with buried conductors," IEEE Transactions on Power Delivery, Volume 7, Issue 3, July 1992, pp.1207-1212.
[3]Mousa, Abdul M. "Soil ionization gradient associated with discharge of high currents into concentrated electrodes," IEEE Transactions on Power Delivery,
Volume 9, Issue 3, July 1994, pp.1669-1677.
[4]Chow, Y.L.; Salama, M.M.A. "A simplified method for calculating the substation grounding grid resistance," IEEE Transactions on Power Delivery, Volume 9, Issue 2, pp.736-742, April 1994.
[5]Chow, Y.L., Elsherbiny, .M., Salama, M.M.A. "Surface voltages and resistance of grounding systems of grid and rods in two-layer earth by the rapid Galerkin''s moment method," IEEE Transactions on Power Delivery 12 (1), pp.179-185, 1997.
[6]Grcev, L.D., Heimbach, M. "Frequency dependent and transient characteristics of substation grounding systems," IEEE Transactions on Power Delivery 12 (1), 1997, pp. 172-178.
[7]Hans. R. Seedher and J. K. Arora, "A practical approach for computation of grid current," IEEE Transactions on Power Delivery, Vol. 14, No.3, July 1999, pp.897-902.
[8]D. J. Woodhouse and R. H. Middleton, "Assessment of analysis techniques used in determining grounding system potential rise from the fall of potential method in Proc," IEEE Power Eng. Soc. Summer Meet., Seattle, WA, Jul. 2000.
[9]Jinxi Ma; Dawalibi, F.P., "Analysis of grounding systems in soils with finite volumes of different resistivities," IEEE Transactions on Power Delivery, Volume 17, Issue 2, April 2002, pp.596-602.
[10]Woodhouse, D.J., Middleton, R.H., "Consistency in ground potential rise estimation utilizing fall of potential method data," IEEE Transactions on Power Delivery, Volume 20, Issue 2, April 2005, pp. 1226-1234.
[11]Rong Zeng, Xuehai Gong, Jinliang He, Bo Zhang, and Yanqing Gao, "Lightning impulse performances of grounding grids for substations considering Soil ionization," IEEE Transactions on Power Delivery, Volume 20, Issue 2, April 2008, pp.667-675.
[12]Lee, C.-H., Chang, C.-N., "Comparison of 161/69 kV Grounding Grid Design Between Indoor-Type and Outdoor-Type Substations," IEEE Transactions on Power Delivery, Volume 20, Issue 2, April 2005, pp.1385-1393.
[13]彭士開、黃佳文,「訂定變電所接地電阻目標值」,台電工程月刊,第448期, 1985, 第25-34頁。
[14]R. B West, "Equipment Grounding for Reliable Ground Fault Protection in Electrical System below 600V, "IEEE Transactions on Ind. Appl. Vol. IA-10, No.2, Mar./Apr. 1974.
[15]R. H. Kaufmann, "Important functions by an effective equipment grounding system," IEEE Trans. on Ind. Appl. Vol. IGA-6, No.6, Nov./Dec. 1970, pp.545-552.
[16]F. Dawalibi, W. G. Finney, "Transmission line tower grounding performance in non-uniform Soil," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-99, No.2, Mar./Apr. 1980, pp.471-479.
[17]EPRI, "Transmission Line Grounding," EPRI Project RP 1494-1 Final Report, Oct. 1982.
[18]M. A. El-Kady, M. Y. Vainberg, "Risk Assessment of Grounding Harzard due to Step and Touch Potentials Near Transmission Line Structures," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, No.10, Sep. 1983, pp. 3080-3087.
[19]IEEE Working Group, "Background and Methodology for Analyzing Step and Touch Potential near Transmission Structures, "IEEE Trans. on Power Apparatus and Systems, Vol. PWRD-1, N0.2, Apr. 1986, pp. 150-162.
[20]周至如、顏世雄、葉勝年,「接地網雙層網路模型及電位分佈之分析」,中華民國第七屆電力工程研討會,1986,第 99-112頁。
[21]IEEE Committee Report, "Safe Substation Grounding-PartII", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, Oct. 1982, pp.4006-4023.
[22]ANSI/IEEE-Std.80-2000, "IEEE Guide for Safety in AC Substation Grounding", the Substation Committee of IEEE Power Engineering Society, New York,2000.
[23]台灣電力公司、中華經研究院,「再生能源效益評估準則訂定研究」, 85.09。
[24]工業技術研究院,「台電公司興建太陽光發電系統及投資太陽光電產業可行性研究-興建太陽光電(PV)發電系統可行性分析及投資規劃」期末報告,台灣電力公司電源開發處,民國93年12月。
[25]Edwin Cunow and Christophe Inglin,“Professional Large Scale Photovoltaic Systems (LSPVS)”, Technical Digest of the International PVSEC-14, Bangkok, Thailand, 2004.
[26]F. Stubenrauch, Renewable Energy Policy in Germany, Projekttrager BEO, http://www.agores.org(2000).
[27]Handbook of PV Science and Engineering, Edited by A. Luque and S.Hegedus, 2003 John Wiley & Sons, Ltd, ISBN:0-471-49196-9.
[28]J.Starrs Thomas et al.,“Policies to Support a Distributed Energy System”,http://www.crest.net/
[29]PV Power Generation System Technology, http://www.nedo.go.jp
[30]Robert Kroni et al.,“Monitoring of a Lare Size PV Installation,”16 European PV Solar Energy Conference, 1-5 May 2000, Glasgow, UK.
[31]Th. Erge et al.,“The Germany 1000 Roof PV Programme-a Resume of the 5 Years Pioneer Project for Small Grid Connected PV System,”2nd world Conference and Exhibition on Solar Energy Conversion, 6-10, 7, 1998, S 2649-S.2651.
[32]Trend in PV Appications, Report IEA-PVPS T1-11, 2002.
[33]ANSI/IEEE Std.80, “IEEE Guide for Safety in AC Substation Grounding,” IEEE Society, New York, 2000.
[34]台灣電力公司,臺灣電力股份有限公司輸電系統規劃準則,2005
[35]台灣電力公司,數位式保護電驛應用方式說明,2009
[36]台灣電力公司,再生能源發電系統併聯技術要點,2009
[37]顏世雄,接地工程講義,台北,全華科技圖書公司,2004,第21-27頁。
[38]吳孟昌,大型高科技工廠接地系統雷擊與開關突波特性分析,中原大學電機研究所碩士論文,民國九十一年六月。
[39]黃啟臺,以長距離電纜連接至電纜連接站之大型電廠接地故障特性研究,中原大學碩士論文,民國九十六年六月。
[40]ATPDraw version 3.5 for Windows 9x/NT2000/XP, Users’ Manual.
[41]黃昱中,科學園區超高壓變電所接地故障特性及其影響研究,碩士論文,國立臺北科技大學電機工程系,台北,2011。
[42]古家豪,廖國忠,楊成發,顏世雄,吳啟瑞,李尚懿,蘇文源,胡鶯銘,「安全接地技術之探討與模擬」 勞工安全衛生研究季刊,第十卷第一期,第22-35 頁,2002。
[43]周至如、顏世雄、彭榮芳,電力電磁干擾防護技術講習會講義,中原大學,民國七十四年。
[44]交連PE電力電纜,太平洋電線電纜股份有限公司。
[45]電線電纜技術手冊,大亞電線電纜股份有限公司。


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top