跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/28 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃信瑋
研究生(外文):Hsin-Wei Huang
論文名稱:模糊控制系統於感應馬達直接轉矩控制之設計
論文名稱(外文):Design of Fuzzy Control System for Induction Motor Direct Torque Control
指導教授:王順源王順源引用關係
口試委員:曾傳蘆黃仲欽曾煥雯
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:直接轉矩控制模糊控制理論磁通控制器轉矩控制器
外文關鍵詞:Direct Torque ControlFuzzy control theoryTorque ControllerFlux Controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用模糊控制理論設計出轉矩與磁通控制器應用於感應馬達直接轉矩控制。傳統的直接轉矩控制利用兩個PI控制器產生兩個電壓向量命令,而PI控制器因參數固定無法即時反應出系統之動態響應,為了改善傳統直接轉矩控制的缺點,將設計出兩個模糊控制器,分別為模糊轉矩控制器與模糊磁通控制器,用來取代傳統的PI控制器,改善磁通響應和降低轉矩漣波並提升系統動態性能。
另外,本研究結合了模糊控制理論與小腦模型控制器,並採用高斯函數作為歸屬函數,設計出適應性模糊小腦模型轉速控制器,此控制器具有結構簡單及學習快速等優點。此外,由於馬達會因為溫升效應造成定子電阻變動而影響動態性能,因此,本研究將參考模型適應系統理論和模糊控制理論結合設計出模糊定子電阻估測器,即時調適定子電阻值,以準確估測磁通量。
最後,本研究整合模糊轉矩和磁通控制器、適應性模糊小腦模型轉速控制器和模糊定子電阻估測器,以現實感應馬達無速度感測器直接轉矩控制驅動系統。經模擬及實驗結果證明,在馬達負載轉矩為8 Nm,轉速控制範圍在36 rpm至2000 rpm時,所提出方法皆具有優異的轉速動態響應。


The fuzzy control theory is used to design torque controller and flux controller these are applied to direct torque control (DTC) of induction motor. In the conventional DTC scheme, two PI controllers are used to generate the reference stator voltage vector. Then the parameters of PI controllers are stationary, therefore it can’t respond the dynamic performance. In order to improve the disadvantages of conventional DTC, this design of two fuzzy controllers (FC); Fuzzy torque controller (FTC) and fuzzy flux controller (FFC) are designed to substitute the original PI controllers, which improves the flux response and reduce the torque ripple for better system dynamic performance.
The thesis also adopts cerebellar model articulation controller (CMAC) and fuzzy control theory with Gaussian as membership functions to design the adaptive fuzzy cerebellar model articulation controller (AFCMAC) speed controller. The mentioned AFCMAC has the advantages of simple structure and rapid learning ability. In addition, for the dynamic performance of motor is affected by stator resistance due to temperature effect, this research combines model reference adaptive system (MRAS) with fuzzy control theory to make the stator resistance fuzzy stator resistance estimator (FSRE) for real-time estimating and acquiring accurate flux linkage.
Finally, this scheme integrated FTC, FFC, AFCMAC speed controller and FSRE to achieve the sensorless speed control for DTC of induction motor. Via the simuliaton and experimental results, the proposed direct torque control systems have excellent speed response and robustness within 36 rpm to 2000 rpm and 8 Nm load torque.


中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機及目的 1
1.2 內容大綱 3
第二章 感應馬達直接轉矩控制理論 4
2.1 前言 4
2.2 感應馬達數學模型 5
2.3 直接轉矩控制系統 12
2.3.1 傳統直接轉矩控制 12
2.3.2 電壓空間向量調變之直接轉矩控制 13
2.4 電壓空間向量調變技術 14
2.5 轉速估測器 18
2.6 本章結語 20
第三章 模糊控制理論 21
3.1 前言 21
3.2 模糊理論基本原理 22
3.3 模糊集合之基本運算 23
3.4 模糊控制器設計概要 25
3.4.1 模糊化 25
3.4.2 知識庫 27
3.4.3 推論引擎 28
3.4.4 解模糊化 30
3.5 本章結語 30
第四章 小腦模型控制器理論 31
4.1 前言 31
4.2 小腦模型控制器架構與原理 32
4.2.1 輸入狀態之量化 34
4.2.2 輸入狀態映射至聯想記憶體 34
4.2.3 聯想記憶體層映射至實際記憶體 35
4.2.4 實際記憶體到輸出層 36
4.2.5 實際記憶體權重值修正 38
4.3模糊小腦模型控制器 38
4.3.1 輸入狀態模糊化 39
4.3.2 推論規則 39
4.3.3 實際記憶體層解模糊至輸出層 40
4.3.4 歸屬函數之梯度法修正 40
4.4 適應性模糊小腦模型轉速控制器設計 41
4.5 本章結語 46
第五章 模糊轉矩控制器和模糊磁通控制器 47
5.1 前言 47
5.2 模糊控制系統設計 47
5.2.1 模糊轉矩控制器 48
5.2.2 模糊磁通控制器 54
5.3 模擬 57
5.4 本章結語 61
第六章 模糊定子電阻估測器 62
6.1 前言 62
6.2 參考模型適應系統 62
6.3 模糊定子電阻估測器設計 63
6.4 模糊邏輯控制器設計 66
6.5 模擬 69
6.6 本章結語 72
第七章 感應馬達直接轉矩控制系統實驗 73
7.1 實驗設備介紹 73
7.2 實驗內容 75
7.4 實驗結果(二) 89
7.5 實驗結果(三) 100
7.6 實驗結果討論 102
7.7 本章結語 103
第八章 結論與未來研究方向 104
8.1 結論 104
8.2 未來研究方向 105
參考文獻 106
附錄:實驗設備照片 112
符號彙編 113
作者簡介 116



[1]Y. A. Kwon and S. H. Kim, "A new scheme for speed-sensorless control of induction motor," IEEE Transactions on Industrial Electronics, vol. 51, 2004, pp. 545-550.
[2]劉昌煥,交流電機控制:向量控制與直接轉矩控制原理 第四版,台北:東華書局,2008。
[3]胡念祖,感應馬達向量控制穩定度分析,碩士論文,國立台灣科技大學電機工程所,台北,2003。
[4]T. G. Habetler, F. Profumo and M. Pastorelli, "Direct torque control of induction machines over a wide speed range," IEEE 1992 Conference Record of Industry Applications Society Annual Meeting, vol. 1, 1992, pp. 600-606.
[5]A. B. Plunkett, "Direct flux and torque regulation in a PWM inverter induction motor drive, "IEEE Transactions on Industry Applications, vol. Ia-3, no. 2, 1977, pp. 139-146.
[6]C. Lascu, I. Boldea and F. Blaabjerg, "A modified direct torque control for induction motor sensorless drive," IEEE Transactions on Industry Applications, vol. 36, 2000, pp. 122-130.
[7]A. Tripathi, A. M. Khambadkone and S. K. Panda, "Space-vector based, constant frequency, direct torque control and dead beat stator flux control of ac machines," Proceedings of IEEE International Conference on Industrial Electronics, Control, Instrumentation Automation, vol. 2, 2001, pp. 1219–1224.
[8]D. Casadei, G. Serra and A. Tani, "Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation," IEEE Transaction on Power Electronics, vol. 15, no. 4, 2000, pp. 769–777.
[9]A. Purcell and P. Acarnely, "Enhanced inverter switching for fast response direct torque control," IEEE Transactions on Power Electronics, vol. 16, no. 3, 2001, pp. 382–389.
[10]H. C. Lu and J. C. Chang, "Integrated structure design for CMAC-based fuzzy logic controller neural networks," IEEE Transactions on Neural networks, 2004, pp. 873-878.
[11]陳宏謀,植基於小腦模型補償之狀態回授控制器設計,碩士論文,國立台灣師範大學工業教育研究所,台北,2002。
[12]S. S. Perng, Y. S. Lai and C. H. Liu, "Sensorless vector controller for induction motor drives with parameter identification," IEEE 1998 Proceedings of 24th Annual Conference of Industrial Electronics Society, vol. 2, 1998, pp. 1008-1013.
[13]徐偉倫,具模糊定子電阻估測器之感應馬達直接轉矩控制系統設計,碩士論文,國立臺北科技大學電機工程系,台北,2009。
[14]X. Ding, Q. Liu, X. Ma, X. He and Q. Hu, "The fuzzy direct torque control of induction motor based on space vector modulation," Third International Conference on Natural Computation, vol.4, 2007 pp.260-264,
[15]Y. Pan and Y. Zhang, "Research on direct torque control of induction motor based on dual-fuzzy space vector modulation technology" Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol.6, 2009, pp.383-388.
[16]S. Cao, G. Liu and B. Cai, "Direct torque control of induction motors based on double-fuzzy space vector modulation technology," International Conference on Information Engineering and Computer Science, vol., 2009, pp.1-4.
[17]J.L. Azcue P, A.J. Sguarezi Filho and E. Ruppert, "TS fuzzy controller applied to the DTC-SVM scheme for three-phase induction motor," Power Electronics Conference (COBEP), 2011 Brazilian, 2011, pp.201-206.
[18]M. N. Uddin and M. Hafeez, "FLC-Based DTC scheme to improve the dynamic performance of an IM Drive," IEEE Transactions on Industry Applications, vol. 48, no. 2, 2012, pp. 823-831.
[19]C. Lascu, I. Boldea and F. Blaabjerg, "Direct torque control of sensorless induction motor drives: a sliding-mode approach," IEEE Transactions on Industry Applications, vol. 40, no. 2, 2004, pp. 582–590.
[20]王順忠、陳秋麟,電機機械基本原理;第四版,台北:東華書局,2006,第547-575頁。
[21]Y. S. Lai and C. J. Lin, "New hybrid fuzzy controller for direct torque control induction motor drives," IEEE Transactions on Power Electronics, vol. 18, no. 5, 2003, pp. 1211–1219.
[22]T. Ohtani, N. Takada and K. Tanaka, "Vector control of induction motor with shaft encoder," IEEE Transactions on Industry Applications, vol. 28, no. 1, 1992, pp. 157-164.
[23]李華德、白晶、李志明、李擎,交流調速控制系統,北京:電子工業出版社,2003。
[24]K. Lee, S. H. Huh, J. Y. Yoo and F. Blaabjerg, "Performance improvement of DTC for induction motor-fed by three-level inverter with an uncertainty observer using RBFN," IEEE Transactions on Energy Conversion, vol. 20, 2005, pp. 276-283.
[25]L. Harnefors, "A comparison between directly parametrised observer and extended Kalman filters for sensorless induction motor drives," IEEE 1998 7th International Conference of Power Electronics and Variable Speed Drives, vol. 2, 1998, pp. 1008-1013.
[26]M. Elloumi, L. B. Brahim and M. A. Al-Hamadi, "Survey of speed sensorless controls for IM drives," IEEE 1998 Proceedings of the 24th Annual Conference of Industrial Electronics Society, vol. 2, 1998, pp. 1018-1023.
[27]L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, 1965, pp. 338-353.
[28]E. H. Mamdani, "Application of fuzzy algorithms for control a simple dynamic plant," IEEE Proceedings of International Conference on Neural Networks, vol. 121, 1974, pp. 1585-1588.
[29]王進德,類神經網路與模糊控制理論入門與應用,台北:全華科技圖書股份有限公司,2007。
[30]楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂,模糊控制理論與技術,台北:全華科技圖書有限公司,1996。
[31]王文俊,認識Fuzzy;第三版,台北:全華圖書有限公司,2007。
[32]T. T. Chen and T. T. Sheu, "Model reference robust speed control for Induction-motor drive with time delay based on neural network," IEEE Transactions on Systems, Man, and Cybernetic-Part A: Systems and Humans, vol. 31, no. 6, 2001, pp. 746-753.
[33]A. Rubaai, R. Kotaru and M. D. Kankam, "Online training of parallel neural network estimators for control of induction motors," IEEE Transactions on Industry Applications, vol. 37, no. 5, 2001, pp. 1512-1521.
[34]L. M. Grzesiak and B. Ufnalski, "Neural-network-based programmable state feedback controller for induction motor drive," IEEE 2006 International Joint Conference on Neural Network, 2006, pp. 1091-1097.
[35]A. Goedtel, I. N. D. Silva and P. J. Amaral Serni, "Recurrent neural network for induction motor speed estimation in industry applications," IEEE 2006 Electrotechnical Conference, Mediterranean, 2006, pp. 1134-1137.
[36]C. P. Hung, "Integral variable structure control of nonlinear system using a CMAC neural network learning approach," IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 34, no. 1, 2004, pp. 702-709.
[37]Y. F. Peng and C. M. Lin, "Intelligent hybrid control for uncertain nonlinear systems using a recurrent cerebellar model articulation controller," IEE Proceedings, Control Theory and Applications, vol. 151, no. 5, 2004, pp. 589- 600.
[38]劉國穎,適應性模糊小腦模型控制器於直接轉矩控制系統之設計,碩士論文,國立臺北科技大學電機工程系碩士班,台北,2008。
[39]D. M. Shi, J. B. Gao and R. Tilani, "Univariate time series forecasting with fuzzy CMAC," IEEE 2004 Proceedings of International Conference on Machine Learning and Cybernetics, 2004, pp. 4166-4170.
[40]林碧輝,使用基底函數之小腦模型控制器的效能改善研究,碩士論文,大同大學電機工程研究所,2001。
[41]T. F. Wu, P. S. Tsai, F. R. Chang and L. S. Wang, "Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation," IEE Proceedings, Control Theory and Applications, vol. 153, no. 6, 2006, pp. 647-657.
[42]C. M. Lin and Y. F. Peng, "Intelligent hybrid control for uncertain nonlinear systems using a recurrent cerebellar model articulation controller," IEE Proceedings, Control Theory Applications, vol. 151, no. 5, 2004, pp. 589-599.
[43]M. Barut, S. Bogosyan and M. Gokasan, "Speed-sensorless estimation for induction motors using extended Kalman filters," IEEE Transactions on Industrial Electronics, vol. 54, 2007, pp. 272-280.
[44]E. Laroche, E. Sedda and C. Durieu, "Methodological insights for online estimation of induction motor parameters," IEEE Transactions on Control System Technology, vol. 16, 2008, pp. 1021-1028.
[45]B. Karanayil, M. F. Rahman and C. Grantham, "Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks," IEEE Transactions on Energy Conversion, vol. 20, 2005, pp. 771-780.
[46]B. Karanayil, M. F. Rahman and C. Grantham, "Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive, " IEEE Transactions on Industrial Electronics, vol. 54, 2007, pp. 167-176.
[47]M. S. Zaky, M. M. Khater, H. Yasin and S. S. Shokralla, "Speed and stator resistance identification schemes for a low speed sensorless induction motor drive," IEEE 2008 12th International Middle-East Conference of Power System, pp. 96-102.
[48]C. Zhang, X. Nian, T. Wang and W. Gui, "Adaptive rotor resistance estimation in the low-speed range of speed sensorless DTC controlled IM drives," IEEE 2008 International Conference of Industrial Technology, 2008, pp. 1-6.
[49]S. Maiti, C. Chakraborty, Y. Hori and M. C. Ta, "Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power," IEEE Transactions on Industrial Electronics, vol. 55, 2008, pp. 594-601.
[50]彭世興,具線上參數調適之無測速器感應馬達驅動技術,博士論文,國立台灣科技大學電機研究所,台北,1999。
[51]羅永昌,適應性定子電阻估測與轉矩漣波最小化之無量測器直接轉矩控制感應馬達驅動器,博士論文,國立台灣科技大學電機研究所,台北,2000。
[52]蔡建年,具有適應性定、轉子電阻線上辨識之無量測器直接轉矩控制感應馬達驅動器,碩士論文,國立勤益科技大學電機研究所,台中,2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊